1,179 research outputs found

    Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: Insights from Raman spectroscopy

    Get PDF
    Raman spectra, supplemented by powder x-ray diffraction and magnetization data of isovalently A- and B-site substituted BiFeO3 in the Bi1−xLaxFeO3 (0≀x≀1), Bi1−xTbxFeO3 (0≀x≀0.2), and Bi0.9Sm0.1Fe1−xMnxO3 (0≀x≀0.3) series, are presented. A good agreement between the structural transitions observed by x-ray diffraction and the vibrational modes observed in the Raman spectra is found over the whole substitutional ranges, and in particular we find spectroscopic signatures of a PbZrO3-type structure for Bi0.8La0.2FeO3. Mode assignments in the substituted materials are made based on Raman spectra of the end-members BiFeO3 and LaFeO3. Moreover, by comparing spectra from all samples with R3c structure, the phonon assignment in BiFeO3 is revisited. A close connection between the degree of octahedral tilt and the Raman shift of the A1 oxygen a−a−a− tilt mode is established. An explanation for the strong second-order scattering observed in Bi1−xLaxFeO3 and Bi1−xTbxFeO3 is suggested, including the assignment of the previously mysterious BiFeO3 mode at 620 cm−1. Finally, the magnetization data indicates a transition from a cycloidal modulated state towards a canted antiferromagnet with increasing A-site substitution, while Bi0.9Sm0.1Fe1−xMnxO3 with x=0 and 0.15 exhibit an anomalous closing of the hysteresis loop at low temperatures. For low A-site substitution levels (x≀0.1) the decreasing Raman intensity of the Fe derived modes correlates with the partial destruction of the spin cycloid as the substitution level increases

    Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition

    Get PDF
    We investigate and experimentally demonstrate a fast and robust chromatic dispersion (CD) estimation method based on temporal auto-correlation after digital spectrum superposition. The estimation process is fast, because neither tentative CD scanning based on CD compensation nor specific cost function calculations are used. Meanwhile, the proposed CD estimation method is robust against polarization mode dispersion (PMD), amplified spontaneous emission (ASE) noise and fiber nonlinearity. Furthermore, the proposed CD estimation method can be used for various modulation formats and digital pulse shaping technique. Only 4096 samples are necessary for CD estimation of single carrier either 112 Gbps DP-QPSK or 224 Gbps DP-16QAM signal with various pulse shapes. 8192 samples are sufficient for the root-raised-cosine pulse with roll-off factor of 0.1. As low as 50 ps/nm standard deviation together with a worst estimation error of about 160 ps/nm is experimentally obtained for 7 x 112 Gbps DP-QPSK WDM signal after the transmission through 480 km to 9120 km single mode fiber (SMF) loop using different launch powers

    Single parity check-coded 16QAM over spatial superchannels in multicore fiber transmission

    Get PDF
    We experimentally investigate single-parity check (SPC) coded spatial superchannels based on polarization-multiplexed 16-ary quadrature amplitude modulation (PM-16QAM) for multicore fiber transmission systems, using a 7-core fiber. We investigate SPC over 1, 2, 4, 5 or 7 cores in a back-to-back configuration and compare the sensitivity to uncoded PM-16QAM, showing that at symbol rates of 20 Gbaud and at a bit-error-rate (BER) of 10(-3), the SPC superchannels exhibit sensitivity improvements of 2.7 dB, 2.0 dB, 1.7 dB, 1.3 dB, and 1.1 dB, respectively. We perform both single channel and wavelength division multiplexed (WDM) transmission experiments with 22 GHz channel spacing and 20 Gbaud channel symbol rate for SPC over 1, 3 and 7 cores and compare the results to PM-16QAM with the same spacing and symbol rate. We show that in WDM signals, SPC over hl1 core can achieve more than double the transmission distance compared to PM-16QAM at the cost of 0.91 bit/s/Hz/core in spectral efficiency (SE). When sharing the parity-bit over 7 cores, the loss in SE becomes only 0.13 bit/s/Hz/core while the increase in transmission reach over PM-16QAM is 44 %. (C) 2015 Optical Society of Americ

    Apparent Half-Lives of Hepta- to Decabrominated Diphenyl Ethers in Human Serum as Determined in Occupationally Exposed Workers

    Get PDF
    The aim of the present study was to model apparent serum half-lives of polybrominated diphenyl ethers (PBDEs) with 7–10 bromine substituents. Workers with occupational exposure to PBDEs have elevated serum levels of PBDEs, but these substances are also found in the general population and are ubiquitous environmental contaminants. The calculations were based on exposure assessments of rubber workers (manufactured flame-retarded rubber compound) and electronics dismantlers who donated blood during a period with no work-related exposures to PBDEs, and referents without any known occupational exposure (clerks, cleaners, and abattoir workers). The workers had previously been found to have elevated levels of high- and medium-brominated diphenyl ethers compared with the referent populations. We performed nonlinear mixed-effects modeling of kinetics, using data from previous and present chemical analyses. The calculated apparent half-life for decabromodiphenyl ether (BDE-209) was 15 days (95% confidence interval, 11–18 days). The three nona-BDEs and four octa-BDE congeners were found to have half-lives of 18–39 and 37–91 days, respectively. BDE-209 has a short half-life in human blood. Because BDE-209 is commonly present in humans in general, the results of this study imply that humans must be more or less continuously exposed to BDE-209 to sustain the serum concentrations observed. BDE-209 is more readily transformed and/or eliminated than are lower brominated diphenyl ether congeners, and human health risk must be assessed accordingly

    Meaning behind measurement : self-comparisons affect responses to health related quality of life questionnaires

    Get PDF
    Purpose The subjective nature of quality of life is particularly pertinent to the domain of health-related quality of life (HRQOL) research. The extent to which participants’ responses are affected by subjective information and personal reference frames is unknown. This study investigated how an elderly population living with a chronic metabolic bone disorder evaluated self-reported quality of life. Methods Participants (n = 1,331) in a multi-centre randomised controlled trial for the treatment of Paget’s disease completed annual HRQOL questionnaires, including the SF-36, EQ-5D and HAQ. Supplementary questions were added to reveal implicit reference frames used when making HRQOL evaluations. Twenty-one participants (11 male, 10 female, aged 59–91 years) were interviewed retrospectively about their responses to the supplementary questions, using cognitive interviewing techniques and semi-structured topic guides. Results The interviews revealed that participants used complex and interconnected reference frames to promote response shift when making quality of life evaluations. The choice of reference frame often reflected external factors unrelated to individual health. Many participants also stated that they were unclear whether to report general or disease-related HRQOL. Conclusions It is important, especially in clinical trials, to provide instructions clarifying whether ‘quality of life’ refers to disease-related HRQOL. Information on selfcomparison reference frames is necessary for the interpretation of responses to questions about HRQOL.The Chief Scientist Office of the Scottish Government Health Directorates, The PRISM funding bodies (the Arthritis Research Campaign, the National Association for the Relief of Paget’s disease and the Alliance for Better Bone Health)Peer reviewedAuthor final versio

    Sleep and epilepsy: A snapshot of knowledge and future research lines

    Get PDF
    Sleep and epilepsy have a reciprocal relationship, and have been recognized as bedfellows since antiquity. However, research on this topic has made a big step forward only in recent years. In this narrative review we summarize the most stimulating discoveries and insights reached by the “European school.” In particular, different aspects concerning the sleep–epilepsy interactions are analysed: (a) the effects of sleep on epilepsy; (b) the effects of epilepsy on sleep structure; (c) the relationship between epilepsy, sleep and epileptogenesis; (d) the impact of epileptic activity during sleep on cognition; (e) the relationship between epilepsy and the circadian rhythm; (f) the history and features of sleep hypermotor epilepsy and its differential diagnosis; (g) the relationship between epilepsy and sleep disorders

    Realizing a 140\ua0GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining

    Get PDF
    This paper presents a novel micromachining process to fabricate a 140\ua0GHz planar antenna based on gap waveguide technology to be used in the next-generation backhauling links. The 140\ua0GHz planar array antenna consists of three layers, all of which have been fabricated using polymer-based microfabrication and injection molding. The 140\ua0GHz antenna has the potential to be used as an element in a bigger 3D array in a line-of-sight (LOS) multiple input multiple output (MIMO) configuration to boost the network capacity. In this work, we focus on the fabrication of a single antenna array element based on gap waveguide technology. Depending on the complexity of each antenna layer’s design, three different micromachining techniques, SU8 fabrication, polydimethylsiloxane (PDMS) molding, and injection molding of the polymer (OSTEMER), together with gold (Au) coating, have been utilized to fabricate a single 140\ua0GHz planar array antenna. The input reflection coefficient was measured to be below − 11\ua0dB over a 14% bandwidth from 132 to 152\ua0GHz, and the antenna gain was measured to be 31 dBi at 140\ua0GHz, both of which are in good agreement with the simulations

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    Breast cancer prognosis predicted by nuclear receptor-coregulator networks

    Get PDF
    Although molecular signatures based on transcript expression in breast cancer samples have provided new insights into breast cancer classification and prognosis, there are acknowledged limitations in current signatures. To provide rational, pathway-based signatures of disrupted physiology in cancer tissues that may be relevant to prognosis, this study has directly quantitated changed gene expression, between normal breast and cancer tissue, as a basis for signature development. The nuclear receptor (NR) family of transcription factors, and their coregulators, are fundamental regulators of every aspect of metazoan life, and were rigorously quantified in normal breast tissues and ERα positive and ERα negative breast cancers. Coregulator expression was highly correlated with that of selected NR in normal breast, particularly from postmenopausal women. These associations were markedly decreased in breast cancer, and the expression of the majority of coregulators was down-regulated in cancer tissues compared with normal. While in cancer the loss of NR-coregulator associations observed in normal breast was common, a small number of NR (Rev-ERBÎČ, GR, NOR1, LRH-1 and PGR) acquired new associations with coregulators in cancer tissues. Elevated expression of these NR in cancers was associated with poorer outcome in large clinical cohorts, as well as suggesting the activation of ERα -related, but ERα-independent, pathways in ERα negative cancers. In addition, the combined expression of small numbers of NR and coregulators in breast cancer was identified as a signature predicting outcome in ERα negative breast cancer patients, not linked to proliferation and with predictive power superior to existing signatures containing many more genes. These findings highlight the power of predictive signatures derived from the quantitative determination of altered gene expression between normal breast and breast cancers. Taken together, the findings of this study identify networks of NR-coregulator associations active in normal breast but disrupted in breast cancer, and moreover provide evidence that signatures based on NR networks disrupted in cancer can provide important prognostic information in breast cancer patients
    • 

    corecore