72 research outputs found
A European Pathogenic Microorganism Proteome Database: Construction and Maintenance
A relational database structure based on MS-Access and MySQL to store and manage
proteomics data was established. This system may be used to publish two-dimensional
electrophoretic proteomics data, and also may be accessed by external users who want to
compare their own data with those in the databases. The maintenance of the database is
managed centrally. The producers of proteomics data do not need to construct a database
themselves. Users can introduce mass spectra into the database, which allows the searching
of peptide mass fingerprints against their own protein sequence databases. The first release
published in January 2002 contains data from Mycobacterium tuberculosis, Helicobacter
pylori, Borrelia garinii, Francisella tularensis, Chlamydia pneumoniae, Mycoplasma pneumoniae,
Jurkat T-cells and mouse mammary gland projects (http://www.mpiib-berlin.
mpg.de/2D-PAGE/)
A European focus on proteomics
A report on the First International Symposium of the Austrian Proteomics Platform, Seefeld, Austria, 26-29 January 2004
The speciation of the proteome
<p>Abstract</p> <p>Introduction</p> <p>In proteomics a paradox situation developed in the last years. At one side it is basic knowledge that proteins are post-translationally modified and occur in different isoforms. At the other side the protein expression concept disclaims post-translational modifications by connecting protein names directly with function.</p> <p>Discussion</p> <p>Optimal proteome coverage is today reached by bottom-up liquid chromatography/mass spectrometry. But quantification at the peptide level in shotgun or bottom-up approaches by liquid chromatography and mass spectrometry is completely ignoring that a special peptide may exist in an unmodified form and in several-fold modified forms. The acceptance of the protein species concept is a basic prerequisite for meaningful quantitative analyses in functional proteomics. In discovery approaches only top-down analyses, separating the protein species before digestion, identification and quantification by two-dimensional gel electrophoresis or protein liquid chromatography, allow the correlation between changes of a biological situation and function.</p> <p>Conclusion</p> <p>To obtain biological relevant information kinetics and systems biology have to be performed at the protein species level, which is the major challenge in proteomics today.</p
Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis
Identification of protein translation start sites is largely a bioinformatics exercise, with relatively few confirmed by N-terminal sequencing. Translation start site determination is critical for defining both the protein sequence and the upstream DNA which may contain regulatory motifs. It is demonstrated here that translation start sites can be determined during routine protein identification, using MALDI-MS and MS/MS data to select the correct N-terminal sequence from a list of alternatives generated in silico. Applying the method to 13 proteins from Mycobacterium tuberculosis, 11 predicted translational start sites were confirmed, and two reassigned. The authors suggest that these data (be they confirmation or reassignments) are important for the annotation of both this genome and those of organisms with related genes. It was also shown that N-acetylation, reported to be rare in prokaryotes, was present in three of the 13 proteins (23 %), suggesting that in the mycobacteria this modification may be common, and an important regulator of protein function, although more proteins need to be analysed. This method can be performed with little or no additional experimental work during proteomics investigations
Pole-to-Pole Connections : Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change
Acknowledgments JK acknowledges the Carl Zeiss foundation for PhD funding, the Marie-Curie COFUND-BEIPD PostDoc fellowship for PostDoc funding, FNRS travel funding and the logistical and financial support by UNIS. JK and FK acknowledge the Natural Environment Research Council (NERC) Antarctic Funding Initiative AFI-CGS-70 (collaborative gearing scheme) and logistic support from the British Antarctic Survey (BAS) for field work in Antarctica. JK and CZ acknowledge the Excellence Initiative at the University of Tübingen funded by the German Federal Ministry of Education and Research and the German Research Foundation (DFG). FH, AV, and PB received funding from MetaHIT (HEALTH-F4-2007-201052), Microbios (ERC-AdG-502 669830) and the European Molecular Biology Laboratory (EMBL). We thank members of the Bork group at EMBL for helpful discussions. We acknowledge the EMBL Genomics Core Facility for sequencing support and Y. P. Yuan and the EMBL Information Technology Core Facility for support with high-performance computing and EMBL for financial support. PC is supported by NERC core funding to the BAS “Biodiversity, Evolution and Adaptation” Team. MB was funded by Helge Ax:son Johnsons Stiftelse and PUT1317. DRD acknowledges the DFG funded project DI698/18-1 Dietrich and the Marie Curie International Research Staff Exchange Scheme Fellowship (PIRSES-GA-2011-295223). Operations in the Canadian High Arctic were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), ArcticNet and the Polar Continental Shelf Program (PCSP). We are also grateful to the TOTAL Foundation (Paris) and the UK NERC (WP 4.3 of Oceans 2025 core funding to FCK at the Scottish Association for Marine Science) for funding the expedition to Baffin Island and within this context Olivier Dargent and Dr. Pieter van West for sample collection, and the Spanish Ministry of Science and Technology through project LIMNOPOLAR (POL200606635 and CGL2005-06549-C02-01/ANT to AQ as well as CGL2005-06549-C02-02/ANT to AC, the last of these co-financed by European FEDER funds). We are grateful for funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), funded by the Scottish Funding Council (HR09011) and contributing institutions. Supplementary Material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2017.00137/full#supplementary-materialPeer reviewedPublisher PD
Link between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity
Adoptive transfer of cross-reactive HSP60-specific CD8+ T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8+ T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demonstrate that 20S proteasomes of different organs display a characteristic composition of α and β chain subunits and produce distinct peptide fragments with respect to both quality and quantity. Digests of HSP60 polypeptides by 20S proteasomes show most efficient generation of the pathology related CD8+ T cell epitope in the small intestine. Further, we demonstrate that the organ-specific potential to produce defined T cell epitopes reflects quantities that are relevant for cytotoxic T lymphocyte recognition. We propose tissue-specific antigen processing by 20S proteasomes as a potential mechanism to control organ-specific immune responses
Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans
Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo
Murine CD146 is widely expressed on endothelial cells and is recognized by the monoclonal antibody ME-9F1
The endothelium plays an important role in the exchange of molecules, but also of immune cells between blood and the underlying tissue. The endothelial molecule S-Endo 1 antigen (CD146) is preferentially located at endothelial junctions and has been claimed to support endothelial integrity. In this study we show that the monoclonal antibody ME-9F1 recognizes the extracellular portion of murine CD146. Making use of ME-9F1 we found CD146 highly expressed and widely spread on endothelial cells in the analyzed murine tissues. In contrast to humans that express CD146 also on T cells or follicular dendritic cells, murine CD146 albeit at low levels was only found on a subset of NK1.1+ cells. The antibody against murine CD146 is useful for immunomagnetic sorting of primary endothelial cells not only from the liver but from various other organs. In vitro, no evidence was seen that the formation and integrity of endothelial monolayers or the transendothelial migration of T cells was affected by antibody binding to CD146 or by crosslinking of the antigen. This makes the antibody ME-9F1 an excellent tool especially for the ex vivo isolation of murine endothelial cells intended to be used in functional studies
- …