5,737 research outputs found

    Antituberculosis drug-induced hepatotoxicity in children

    Get PDF
    Recent increases in the dosages of the essential antituberculosis agents isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA) for use in children recommended by World Health Organization have raised concerns regarding the risk of hepatotoxicity. Published data relating to the incidence and pathogenesis of antituberculosis drug-induced hepatotoxicity (ADIH), particularly in children, is reviewed. Amongst 12,708 children receiving chemoprophylaxis, mainly with INH, but also other combinations of INH, RMP and PZA only 1 case (0.06%) of jaundice was recorded and abnormal liver functions documented in 110 (8%) of the 1225 children studied. Excluding tuberculous meningitis (TBM) 8984 were children treated for tuberculosis disease and jaundice documented in 75 (0.83%) and abnormal liver function tests in 380 (9.9%) of the 3855 children evaluated. Amongst 717 children treated for TBM, however, jaundice occurred in 72 (10.8%) and abnormal LFT were recorded in 174 (52.9%) of those studied. Case reports document the occurrence of ADIH in at least 63 children. Signs and symptoms of ADIH were frequently ignored in the recorded cases. ADIH can occur in children at any age or at any dosage of INH, RMP or PZA, but the incidence of.ADIH is is considerably lower in children than in adults. Children with disseminated forms of disease are at greater risk of ADIH. The use of the higher dosages of INH, RMP and PZA recently recommended by WHO is unlikely to result in a greater risk of ADIH in children

    A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Get PDF
    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications

    Darling Range rural land capability study

    Get PDF
    This report presents land resource mapping and land capability assessments for rural residential and associated agricultural activities at a scale of 1:50,000 over 100,000 ha of rural land in Perth\u27s eastern metropolitan hills area. The study area is bounded to the west by the Great Northern, Albany, Roe and South Western highways, and extends north, east and south to the boundary of the Perth metropolitan area. Using the broad framework of landform-soil associations defined by Churchward and McArthur (1980), discrete mapping units have been delineated by reference to landform and soil characteristics likely to affect future land uses. They provide a framework for land capability assessment in terms of the Western Australian Department of Agriculture\u27s five class system. Land capability assessments for specific land uses, and values for individual land qualities and characteristics, are presented for each map unit in a tabular format. This information forms the data base for the digital mapping on the Western Australian Land Information System (WALIS) Intervax 8650 computer. Because of limitations imposed by the mapping scale, the capability assessment results presented should be used primarily for regional land use planning purposes. For more detailed site specific application, on-site inspections may be required to determine whether the land use limitations indicated do occur and are of the magnitude described by the capability ratings

    Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139921/1/nph14598.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139921/2/nph14598_am.pd

    Increasing external effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications for other Chinese cities.

    Get PDF
    It is challenging to reduce ground-level ozone (O3) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O3 pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O3 and Ox (=O3+NO2) concentrations observed during the high O3 season (September-November) at Air Quality Monitoring Stations. The locally produced Ox showed a statistically significant decreasing trend over 2002-2013 in Hong Kong. Analysis by an observation-based model confirms this decline in in situ Ox production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background Ox transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O3 and a nondecrease in Ox. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O3 problem in Hong Kong. China's air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required

    What Counts in Brain Aging? Design-Based Stereological Analysis of Cell Number

    Get PDF
    The advent and implementation of new design-based stereological techniques allows the quantification of cell number without the assumptions required when obtaining areal densities. These new techniques are rapidly becoming the standard for quantifying cell number, particularly in aging studies. Recently, studies using stereological techniques have failed to confirm earlier findings regarding age-associated neural loss. This newly emerging view of retained cell number during aging is having a major impact on biogerontology, prompting revaluation of long-standing hypotheses of age-related cell loss as causal for age-related impairments in brain functioning. Rather than focus on neuronal loss as the end-result of a negative cascade of neuronal injury, research has begun to consider that age-related behavioral declines may reflect neuronal dysfunction (e.g., synaptic or receptor loss, signal transduction deficits) instead of neuronal death. Here we discuss design-based stereology in the context of age-related change in brain cell number and its impact on consideration of structural change in brain aging. Emergence of this method of morphometries, however, can have relevance to many areas of gerontological researc

    Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function

    Full text link
    We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO 2 and nitrogen (N) deposition treatments. Because elevated CO 2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO 2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO 2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO 2 and ambient N, or ambient CO 2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO 2 . In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO 2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72693/1/j.1365-2486.2007.01313.x.pd
    • 

    corecore