1,147 research outputs found

    The Rumsfeld paradox: some of the things we know that we don’t know about plant virus infection

    Get PDF
    Plant-infecting viruses cause significant crop losses around the world and the majority of emerging threats to crop production have a viral etiology. Significant progress has been made and continues to be made in understanding how viruses induce disease and overcome some forms of resistance–particularly resistance based on RNA silencing. However, it is still not clear how other antiviral mechanisms work, how viruses manage to exploit their hosts so successfully, or how viruses affect the interactions of susceptible plants with other organisms and if this is advantageous to the virus, the host, or both. In this article we explore these questions

    Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition

    Full text link
    We consider the process of primordial black hole (PBH) formation originated from primordial curvature perturbations produced during waterfall transition (with tachyonic instability), at the end of hybrid inflation. It is known that in such inflation models, rather large values of curvature perturbation amplitudes can be reached, which can potentially cause a significant PBH production in the early Universe. The probability distributions of density perturbation amplitudes in this case can be strongly non-Gaussian, which requires a special treatment. We calculated PBH abundances and PBH mass spectra for the model, and analyzed their dependence on model parameters. We obtained the constraints on the parameters of the inflationary potential, using the available limits on βPBH\beta_{PBH}.Comment: v2: 11 pages, 4 figures. Several comments and references added. Version accepted by Phys. Rev.

    The dynamics of quantum vortices in a toroidal trap

    Full text link
    The dynamics of quantum vortices in a two-dimensional annular condensate are considered by numerically simulating the Gross-Pitaevskii equation. Families of solitary wave sequences are reported, both without and with a persistent flow, for various values of interaction strength. It is shown that in the toroidal geometry the dispersion curve of solutions is much richer than in the cases of a semi-infinite channel or uniform condensate studied previously. In particular, the toroidal condensate is found to have states of single vortices at the same position and circulation that move with different velocities. The stability of the solitary wave sequences for the annular condensate without a persistent flow are also investigated by numerically evolving the solutions in time. In addition, the interaction of vortex-vortex pairs and vortex-antivortex pairs is considered and it is demonstrated that the collisions are either elastic or inelastic depending on the magnitude of the angular velocity. The similarities and differences between numerically simulating the Gross-Pitaevskii equation and using a point vortex model for these collisions are elucidated.Comment: Submitted to Phys. Rev. A. 18 pages, 22 figure

    The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction

    Get PDF
    The Cucumber mosaic virus (CMV) 2b protein is a counter-defense factor and symptom determinant. Conserved domains in the 2b protein sequence were mutated in the 2b gene of strain Fny-CMV. The effects of these mutations were assessed by infection of Nicotiana tabacum, N. benthamiana, and Arabidopsis thaliana (ecotype Col-0) with mutant viruses and by expression of mutant 2b transgenes in A. thaliana. We confirmed that two nuclear localization signals were required for symptom induction and found that the N-terminal domain was essential for symptom induction. The C-terminal domain and two serine residues within a putative phosphorylation domain modulated symptom severity. Further infection studies were conducted using Fny-CMVΔ2b, a mutant that cannot express the 2b protein and that induces no symptoms in N. tabacum, N. benthamiana, or A. thaliana ecotype Col-0. Surprisingly, in plants of A. thaliana ecotype C24, Fny-CMVΔ2b induced severe symptoms similar to those induced by the wild-type virus. However, C24 plants infected with the mutant virus recovered from disease while those infected with the wild-type virus did not. Expression of 2b transgenes from either Fny-CMV or from LS-CMV (a mild strain) in Col-0 plants enhanced systemic movement of Fny-CMVΔ2b and permitted symptom induction by Fny-CMVΔ2b. Taken together, the results indicate that the 2b protein itself is an important symptom determinant in certain hosts. However, they also suggest that the protein may somehow synergize symptom induction by other CMV-encoded factors

    Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Doring equations with power law rate coefficients

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. We investigate the Becker-Dorging equations, originally formulated to describe and analyse non-equilibrium phase transitions, and more recently generalised to describe a wide range of physicochemical problems. In the present paper we analyse how the systematic coarse-graining renormalisation of the \BD system of equations affects the aggregation and fragmentation rate coefficients. We consider the case of power-law size-dependent cluster rate coefficients which we show lead to only three classes of system that require analysis: coagulation-dominated systems, fragmentation-dominated systems and those where coagulation and fragmentation are exactly balanced. We analyse the late-time asymptotics associated with each class.Comment: 18 pages, to appear in J Phys A Math Ge

    RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Get PDF
    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.LJRH was supported by a studentship co-funded by the James Hutton Institute (formerly Scottish Crop Research Institute) and the UK Biotechnological and Biological Sciences Research Council (BBSRC). Work in the JPC lab is funded by The Leverhulme Trust (RPG-2012-667), BBSRC (BB/D014376/1, BB/J011762/1) and the Cambridge University Newton Trust. SFB was funded by Leverhulme grant F/09-741/G to Professor Beverley Glover. KG was funded by an EMBO Short Term Fellowship. Work in the PP lab is funded by grant number NRF-2013R1A2A2A01016282 from the Korean National Research Foundation.This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/srep2308

    Isomerization dynamics of a buckled nanobeam

    Full text link
    We analyze the dynamics of a model of a nanobeam under compression. The model is a two mode truncation of the Euler-Bernoulli beam equation subject to compressive stress. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to silicon. The two mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerisation reactions in chemistry. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerisation reactions. When the second mode is stable the potential energy surface has an index one saddle and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to construct a phase space dividing surface between the two "isomers" (buckled states). The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles in a unified fashion. We have computed reactive fluxes, mean gap times and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more `pulses' of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the 2-mode model in the physical regime considered, a rate constant for isomerization does not exist.Comment: 42 pages, 6 figure
    • …
    corecore