
 

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 
Author(s): Mathew Lewsey, Monique Surette, Fiona C. Robertson , 
Heiko Ziebell, Sun Hee Choi, Ki Hyun Ryu, Tomas Canto, Peter 
Palukaitis, Tina Payne, John A. Walsh and John P. Carr 
Article Title: The roles of the Cucumber mosaic virus 2b protein in 
promoting movement and inducing or sustaining symptom induction in 
Arabidopsis and Nicotiana plants  
Year of publication: 2009 
Link to published version: http://dx.doi.org/10.1094/MPMI-22-6-0642 
Publisher statement: None 

 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/48767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


Lewsey et al. MPMI 1 

The roles of the Cucumber mosaic virus 2b protein in promoting 

movement and inducing or sustaining symptom induction in 

Arabidopsis and Nicotiana plants 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

 

Mathew Lewsey1, Monique Surette1, Fiona C. Robertson1 , Heiko Ziebell1,2, Sun Hee 

Choi3, Ki Hyun Ryu3, Tomas Canto4,5, Peter Palukaitis4, Tina Payne2, John A. Walsh2 

and John P. Carr1 

 

1Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK 

2Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK 

3Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women’s 

University, Seoul 139-774, Korea 

4Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 

5Centro de Investigaciones Biologicas, 28040 Madrid, Spain 

 

Correspondence John P. Carr  jpc1005@hermes.cam.ac.uk 

 



Lewsey et al. MPMI 2 

ABSTRACT 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

The cucumber mosaic virus (CMV) 2b protein is a counter-defense factor and 

symptom determinant. Conserved domains in the 2b protein sequence were 

mutated in the 2b gene of strain Fny-CMV.  The effects of these mutations were 

assessed by infection of Nicotiana tabacum, N. benthamiana and Arabidopsis 

thaliana (ecotype Col-0) with mutant viruses and by expression of mutant 2b 

transgenes in A. thaliana.  We confirmed that two nuclear localization signals 

were required for symptom induction and found that the N-terminal domain was 

essential for symptom induction.  The C-terminal domain and two serine 

residues within a putative phosphorylation domain modulated symptom severity.  

Further infection studies were conducted using Fny-CMVΔ2b, a mutant which 

cannot express the 2b protein and that induces no symptoms in N. tabacum, N. 

benthamiana or A. thaliana ecotype Col-0.  Surprisingly, in plants of A. thaliana 

ecotype C24, Fny-CMVΔ2b induced severe symptoms, similar to those induced 

by the wild-type virus.  However, C24 plants infected with the mutant virus 

recovered from disease whilst those infected with the wild-type virus did not. 

Whereas expression of Fny 2b-transgenes induced symptom-like phenotypes in 

Col-0, this was rarely seen in the C24 background.  Expression of 2b-transgenes 

from either Fny-CMV or from LS-CMV (a mild strain) in Col-0 plants enhanced 

systemic movement of Fny-CMVΔ2b and permitted symptom induction by Fny-

CMVΔ2b.  Taken together, the results indicate that while the 2b protein is an 

important symptom determinant in certain hosts, it can also synergize symptom 

induction by other CMV-encoded factors.  
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Cucumber mosaic virus (CMV) is the type Cucumovirus species and CMV 

strains are further classified into one of three subgroups (IA, IB, or II) (Palukaitis and 

García-Arenal 2003; Roossinck et al. 1999).  Cucumoviruses possess tripartite, 

positive sense RNA genomes encoding five proteins (Habili and Francki 1974; 

Palukaitis and García-Arenal 2003; Wikoff et al. 1997).  One of these proteins is the 

multifunctional 2b protein (c. 12 kDa) encoded by the second open reading frame 

(ORF) of RNA 2 and synthesized by the translation of a sub-genomic mRNA, RNA 

4A (Ding et al. 1994).   

 

The 2b protein influences local and systemic viral movement and inhibits host 

defense mechanisms based on salicylic acid (SA)-induced resistance and RNA 

silencing (Béclin et al. 1998; Brigneti et al. 1998; Ding et al. 1995; Guo et al. 2005; Ji 

and Ding 2001; Li et al. 1999; Mourrain et al. 2000; Shi et al. 2003; Soards et al. 

2002).  The severity of the symptoms induced by subgroup IA, IB and II CMV strains 

and by tomato aspermy virus, another cucumovirus, is determined in large part by the 

properties of the 2b proteins of these viruses (Du et al. 2007; Shi et al. 2002, 2003).  

Thus, a mutant of the subgroup II CMV strain Q that cannot express the 2b protein 

(Q-CMVΔ2b) was unable to move systemically in cucumber and displayed decreased 

symptom induction in Nicotiana glutinosa and tobacco (N. tabacum) (Ding et al. 

1996; Ji and Ding 2001).  A 2b deletion mutant of the subgroup IA strain Fny (Fny-

CMVΔ2b) moves systemically in tobacco and N. benthamiana but does not induce 

symptoms (Soards et al. 2002; Ziebell et al. 2007). 
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Constitutive expression of 2b genes from various subgroup II and subgroup IA 

strains of CMV in transgenic Arabidopsis thaliana (ecotype Col-0) and Nicotiana spp. 

(Du et al. 2007; Siddiqui et al., 2008) provided evidence that the severity of symptoms 

induced by these strains was related to the ability of their respective 2b proteins to 

disrupt the regulation of host gene expression by micro(mi)RNAs (Chapman et al. 

2004; Lewsey et al. 2007; Zhang et al. 2006). Thus, transgenic plants expressing Fny-

CMV 2b protein displayed strong symptom-like phenotypes (distortion of leaves, 

general stunting and disturbance of root architecture: Lewsey et al. 2007), whereas 

transgenic plants expressing Q- or LS-CMV 2b proteins are similar in appearance to 

non-transgenic plants (Chapman et al. 2004; Lewsey et al. 2007; Zhang et al. 2006). 

Using the subgroup IA strain Fny-CMV we have investigated the importance of 

specific domains within the 2b protein for symptom induction and the requirement for 

the 2b protein in symptom induction by the virus in a number of hosts.   
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Mutagenesis of specific domains in the 2b protein affects CMV-induced 

symptoms 

The 2b genes and protein sequences from different CMV strains share several 

highly conserved features. For example, there is an overlap between the 5’ region of 

the 2b open reading frame (ORF) and the 3’ region of the 2a replicase protein gene. 

Other conserved features include: a conserved bipartite, arginine-rich nuclear 

localization sequence (NLS); a putative phosphorylation sequence, and a C-terminal 

sequence of approximately 17 amino acids (Lucy et al. 2000; Mayers et al. 2000; 

Wang et al. 2004) (Fig. 1A).  To investigate the roles of these conserved regions and 

domains in protein function, we carried out site-directed mutagenesis of the 2b ORF 

in an infectious cDNA clone of Fny-CMV RNA 2 (pFny209: Rizzo and Palukaitis 

1990) (Supp. Table 1). 

 

A number of mutant plasmids were made (Fig. 1 and Supp. Table 1). In 

plasmid pFny209:Δ5T the nucleotides encoding the first 17 amino acids of the Fny-

CMV 2b protein sequence were deleted (Fig. 1). Plasmids pFny209:ΔNLS1, 

pFny209:ΔNLS2 and pFny209:ΔNLS1+2 encode, respectively, RNAs 2 in which one 

of the two segments of the 2b protein NLS (1 or 2) or both segments were deleted 

(Fig. 1). Plasmid pFny209:ΔKSPSE encodes an RNA 2 in which the sequence for the 

putative phosphorylation motif KSPSE in the 2b protein was entirely deleted (Fig. 1).  

Plasmids pFny209:S40A and pFny209:S42A encode, respectively, 2b protein 

sequences in which serine residues 40 and 42 have been replaced by alanine residues 

(Fig. 1).  These two serine residues are the most probable phosphorylation sites within 
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the putative phosphorylation domain.  Plasmid pFny209:Δ3T encodes a truncated 

RNA 2 lacking the 3’ terminal RNA sequence of the 2b ORF, corresponding to the C-

terminal 16 amino acids of the 2b protein (see Fig. 1 and Supp. Table 1).  For all 

newly made constructs, successful mutation of pFny209 was confirmed by DNA 

sequencing (data not shown). 
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Wild-type (WT) and mutant RNAs 2  were generated by in vitro transcription 

and combined as appropriate with in vitro-synthesized RNAs 1 and 3 using the 

plasmids pFny109 and pFny309 as templates (Rizzo and Palukaitis 1990; Supp. Table 

2).  Infectious transcripts of the mutant Fny-CMVΔ2b, in which most of the 2b ORF 

is deleted, were also reconstituted (Ryabov et al. 2001; Soards et al. 2002; 

Supplementary Supp. Table 2).  These were mechanically inoculated onto leaves of 

tobacco (cv. Xanthi-nc), N. benthamiana and A. thaliana plants and the development 

of symptoms was observed (Table 1; Fig. 2; Supp. Figs. 1 and 2).  In all host/virus 

combinations, systemic accumulation of the virus was confirmed by RT-PCR (Fig. 3 

and data not shown), using PCR primers flanking the 2b coding region (Ziebell et al. 

2007).  Conservation of the mutations within the viral progeny was confirmed by 

DNA sequencing of RT-PCR products (data not shown). 

 

Infections of tobacco with Fny-CMVΔ5T, Fny-CMVΔNLS1, Fny-

CMVΔNLS2, Fny-CMVΔNLS1+2 or Fny-CMVΔKSPSE were asymptomatic (Table 

1; Fig. 2A; Supp. Fig. 1).  As previously described, infection of tobacco by Fny-

CMVΔ2b was also asymptomatic (Table 1; Fig. 2A; Supp. Fig. 1; Soards et al., 2002).  

Infection with Fny-CMVS40A or Fny-CMVS42A caused mild symptoms in tobacco.  

These included leaf distortion, mild vein clearing and very slight stunting (Table 1; 
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Fig. 2A; Supp. Fig. 1).  Tobacco plants infected with Fny-CMVΔ3T exhibited severe 

symptoms, which included mosaic and leaf distortion and a more marked yellowing 

than those induced by Fny-CMV (Table 1; Fig. 2A; Supp. Fig. 1).   
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Similarly, infection of N. benthamiana plants with Fny-CMVΔ5T, Fny-

CMVΔNLS2, Fny-CMVΔNLS1+2 or Fny-CMVΔKSPSE did not induce any obvious 

symptoms (Table 1; Fig. 2B).  However, symptoms induced by Fny-CMVΔ3T were 

more severe than those induced by Fny-CMV in N. benthamiana, in that plants 

infected with Fny-CMVΔ3T exhibited more extensive necrosis than those infected 

with Fny-CMV (Table 1; Fig. 2B; Supp. Fig. 2).  Infection with Fny-CMVΔNLS1 

caused mild stunting, whilst Fny-CMVS40A caused slight leaf distortion and slight 

stunting (Table 1; Fig. 2B; Supp. Fig. 2).  Infection with Fny-CMVS42A caused 

moderate stunting and leaf distortion (Table 1; Fig. 2B; Supp. Fig. 2).   

 

In A. thaliana ecotype Col-0 plants, infection with Fny-CMVΔ2b, Fny-

CMVΔ5T, Fny-CMVΔNLS1, Fny-CMVΔNLS2, Fny-CMVΔNLS1+2 or Fny-

CMVΔKSPSE did not induce symptoms (Table 1; Supp. Fig. 2C).  Fny-CMVS40A or 

Fny-CMVS42A infections caused mild stunting, whilst Fny-CMVΔ3T infection 

caused severe symptoms similar to those induced by WT Fny-CMV infection (Table 

1; Supp. Fig. 2C).  These reactions were similar to those of tobacco and N. 

benthamiana (Table 1; Fig. 2; Supp. Figs. 1 and 2). 

 

Constitutive expression of the Fny-CMV 2b ORF in A. thaliana induced a 

symptom-like phenotype (Lewsey et al. 2007).  Expression was achieved using the 

binary expression vector pBI121 Fny 2b, which contains a cauliflower mosaic virus 
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(CaMV) 35S promoter to drive constitutive expression of the 2b gene (Lewsey et al. 

2007).  The Δ5T and Δ3T truncations (Fig. 1) of the 2b protein were recreated in this 

vector by introducing stop codons at amino acids 2 and 9 (Δ5T) or amino acid 95 

(Δ3T) (Supp. Fig. 3).  In transgenic A. thaliana (Col-0) plants the 35S:Fny2bΔ5T 

construct induced no obvious changes in phenotype, whilst 35S:Fny2bΔ3T induced a 

symptom-like phenotype similar to that induced by constitutive expression of a wild-

type Fny-CMV 2b transgene (Supp. Fig. 4; Lewsey et al. 2007).  These modified plant 

phenotypes are consistent with the symptoms induced by infection of non-transgenic 

plants with the corresponding mutant viruses.  This indicates that the differences in 

symptoms induced by Fny-CMVΔ5T and Fny-CMVΔ3T, compared with those 

induced by wild-type Fny-CMV, are due solely to the properties of the mutant 2b 

proteins and not to altered interactions between the 2b protein and other CMV gene 

products.  
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A. thaliana ecotypes exhibit different responses to a CMV mutant lacking the 2b 

gene  

Fny-CMVΔ2b infection is symptomless in plants of two cultivars of N. 

tabacum (Soards et al. 2002; Ziebell et al. 2007), as well as in N. benthamiana 

(Ziebell et al. 2007) and A. thaliana (ecotype Col-0) (Lewsey et al. 2007). We also 

found that infection with this mutant virus was symptomless in N. clevelandii and N. 

rustica plants (data not shown).  However, Wang and colleagues (2004) previously 

observed that Cucurbita pepo L. cv. Ma’yan plants infected with Fny-CMVΔ2b 

exhibited mild symptoms early in infection followed by recovery.  We have observed 

similar results in C. pepo cv. Goldrush (data not shown) and the Warwick accession 

of Chenopodium quinoa (Supp. Fig. 5).  N. occidentalis plants exhibited symptoms of 
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systemic mosaic and leaf curling when infected with Fny-CMV or Fny-CMVΔ2b, but 

recovery was not assessed (data not shown).  These observations suggest that in 

certain hosts the 2b protein cannot be the sole determinant required for full 

pathogenicity.  Consistent with this idea, we found that A. thaliana plants belonging 

to the ecotypes Wassilewskija, Landsberg erecta, Nössen and RLD (Fig. 4) exhibited 

stunting, but no other symptoms, in response to infection with Fny-CMVΔ2b and that 

this mutant evoked easily recognizable symptoms in plants of the C24 ecotype (Fig. 

5A).  These symptoms included necrosis and disturbance of normal leaf development 

(Fig. 5A).  This contrasted with infection of A. thaliana ecotype Col-0 by Fny-

CMVΔ2b, which was asymptomatic (Table 1; Supp. Fig. 1). 
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When infected with either wild-type Fny-CMV or the mutant Fny-CMVΔ2b, 

C24 plants exhibited symptoms that included extensive necrosis, which was not 

observed on plants of the other ecotypes following infection with either of these 

viruses (Fig. 5A and data not shown).  Observation over time indicated that symptom 

induction on C24 plants by Fny-CMVΔ2b was delayed relative to Fny-CMV and that 

the symptoms induced by the mutant were slightly milder (Fig. 5A).  A. thaliana 

ecotype C24 plants infected with Fny-CMV eventually died, whilst those infected 

with Fny-CMVΔ2b eventually exhibited recovery from disease in the form of 

apparently symptom-free new growth (Fig. 5A and B).  Fny-CMVΔ2b RNA was 

detected by RT-PCR in the emerging leaves that exhibited recovery from disease (Fig. 

5C).  This indicates that the plants had not undergone a true recovery, where the 

initially infecting virus is usually undetectable in recovered tissue.  
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Symptom determination by the 2b protein is independent of its ability to 

promote viral movement 
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We explored further the roles of the 2b protein in enhancement of systemic 

movement and the induction of symptoms when expressed in 2b-transgenic plants.  

Transgenic A. thaliana (Col-0) plants expressing the Fny-CMV 2b protein 

(35S:Fny2b: Lewsey et al. 2007) were infected with Fny-CMV or Fny-CMVΔ2b.  

Virus accumulation and the induction of symptoms in systemically infected leaves 

were examined at various times following inoculation.  The systemic movement of 

wild-type and mutant CMV was monitored by taking samples of protein from non-

inoculated leaves at 6, 12 and 21 days post-inoculation (dpi).  Virus accumulation was 

detected by immunoblot analysis of leaf proteins using an antiserum specific for the 

CMV coat protein. 

 

In non-transgenic plants of A. thaliana ecotype Col-0, Fny-CMVΔ2b spread to 

non-inoculated leaves less rapidly than wild-type Fny-CMV (Fig. 6A), consistent with 

the pattern of Fny-CMVΔ2b systemic movement in tobacco (Soards et al. 2003).  In 

transgenic plants constitutively expressing the Fny 2b protein, Fny-CMVΔ2b 

movement to non-inoculated tissues occurred as rapidly as movement of wild-type 

Fny-CMV (Fig.4A). However, the amount of mutant virus that accumulated in the 

non-inoculated leaves was still less than that achieved by the wild-type virus (Fig. 

6A).   

 

Experiments were conducted to further delineate the abilities of 2b proteins 

from CMV strains from different subgroups to promote movement and induce 

symptoms.  Transgenic A. thaliana ecotype Col-0 harboring the 2b coding region of a 
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subgroup II CMV strain (LS-CMV) under the control of a CaMV 35S promoter 

(35S:LS2b: Lewsey et al. 2007) were utilized.  The 35S:LS2b transgene induces only 

very slight changes in plant phenotype and infection of non-transgenic A. thaliana 

ecotype Col-0 with LS-CMV is symptomless (Lewsey et al. 2007).  Non-transgenic A. 

thaliana ecotype Col-0 plants, 35S:LS2b and 35S:Fny2b plants were inoculated with 

Fny-CMVΔ2b.  Samples of protein were extracted from non-inoculated leaf tissue at 

5, 7, 9 and 11 dpi and analyzed for CMV coat protein accumulation by 

immunoblotting (Fig. 6B).  It was found that the 35S:LS2b transgene complemented 

accumulation of Fny-CMVΔ2b in systemically infected tissues as effectively as 

35S:Fny2b (Fig. 6B). 
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During the experiments investigating systemic movement of Fny-CMV and 

Fny-CMVΔ2b in 2b-transgenic plants, virus-induced symptom development was 

monitored.  A. thaliana ecotype Col-0 plants harboring 35S:Fny2b or 35S:LS2b 

transgenes were infected with Fny-CMV, Fny-CMVΔ2b or were mock-inoculated.  

Fny-CMVΔ2b infection was confirmed by RT-PCR for Fny-CMVΔ2b RNA (Fig. 7).  

Plants confirmed to be infected with Fny-CMVΔ2b were assessed visually for 

symptoms one month post-inoculation and photographed (Fig. 8).  It should be noted 

that non-infected plants of these 35S:Fny2b lines exhibit a mild symptom-like 

phenotypic change in response to the transgene and that non-infected plants of the 

35S:LS2b lines utilized exhibit very mild developmentally perturbed phenotype 

changes   (Lewsey et al. 2007).  Infection of all 2b-transgenic plants with wild-type 

Fny-CMV resulted in very severe disease symptoms. These were more severe than 

those induced by infection of non-transgenic A. thaliana ecotype Col-0 (Fig. 8).  This 

is most likely to be because development of these plants is affected by both the 2b 
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protein expressed from the transgene and the 2b protein expressed by the virus.  Fny-

CMVΔ2b did not induce symptoms in non-transgenic A. thaliana ecotype Col-0 

plants (Fig. 5, 8; Supp. Fig. 1C).  Contrastingly, plants expressing either the 

35S:Fny2b or the 35S:LS2b transgene infected with Fny-CMVΔ2b exhibited obvious 

stunting compared to mock-inoculated controls (Fig. 8).  This demonstrates that the 

2b protein of either LS- or Fny-CMV was able to complement symptom induction by 

Fny-CMVΔ2b. 
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We examined the possibility that complementation of systemic movement of 

Fny-CMVΔ2b and the induction of symptoms in 2b-transgenic plants was a result of 

recombination between the transgenic 2b mRNA and the truncated RNA 2 of the 

mutant virus, resulting in the generation of reconstituted wild-type or chimeric virus. 

We carried out RT-PCR reactions on RNA from systemically infected leaves using a 

primer combination that can be used to distinguish between wild-type and mutant 

RNA 2 molecules (Ziebell et al. 2007).  Full length CMV RNA 2 was not detected in 

any RT-PCR reactions (Fig. 6 and data not shown), indicating that recombination had 

not occurred between the transgene-encoded mRNAs and RNA 2 of Fny-CMVΔ2b.  

Thus, the effects on systemic movement (Fig. 6) and on symptom development (Fig. 

8) are caused by 2b protein supplied in trans, as RT-PCR data indicated that 2b 

transgene-derived mRNAs had not recombined with the virus (Fig. 7). 
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The results of this study show that the CMV 2b protein influences disease 

induction in two ways. Firstly, and consistent with earlier studies, the 2b protein can 

act directly as an inducer of symptoms (Lewsey et al. 2007; Lucy et al. 2000; Wang et 

al., 2004; Zhang et al. 2006).  Secondly, it can synergize and sustain symptom 

induction by other viral gene products.  This supporting role in symptom induction 

appears to be independent of the ability of a 2b protein to induce symptoms 

autonomously. 

 

The roles in symptom induction of specific domains within the 2b protein  

The 2b protein of the subgroup IA strain of CMV, Fny-CMV, is a strong 

inducer of symptoms in several hosts.  Amino acid sequence domains within the 2b 

protein were found to affect its ability to induce symptoms in plants from three host 

species: tobacco, N. benthamiana and A. thaliana ecotype Col-0.  In all three hosts, 

deletion of the entire putative phosphorylation sequence (in the mutant Fny-

CMVΔKSPSE) completely abolished symptom induction.  Point mutations in Fny-

CMVS40A and Fny-CMVS42A, whereby the potential for phosphorylation of the 2b 

protein was abolished by exchange of serine for alanine residues greatly decreased but 

did not completely abolish CMV-induced symptom induction in these three hosts.  

Deletion of the corresponding five residues from the 2b protein of Q-CMV (subgroup 

II) also abolished symptom induction (Ding et al. 1995).  These results are consistent 

with our suggestion that these serine residues are likely to be phosphorylatable and 

indicate that the phosphorylation state of the 2b protein modulates its symptom-

inducing activity.  Sequence analysis by Lucy and colleagues (2000) indicated that 
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these five residues may contain motifs for phosphorylation that occur in substrates for 

casein kinase II (CKII) and cyclin-dependent kinase 2 (CDK2).  They proposed that 

the combination of NLSs with CDKII and CDC2 phosphorylation sites constitutes a 

CcN motif, which has been shown to be involved in regulation of nuclear import for 

many proteins (Lucy et al. 2000).  They also noted that several aligned 2b sequences 

possessed potential nuclear export signals, suggesting that the 2b protein may shuttle 

in and out of the nucleus (Lucy et al. 2000). 
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Previous studies have demonstrated that functional NLS(s) are required for 2b 

protein to act as a symptom determinant when expressed from vectors derived from 

potato virus X and zucchini yellow mosaic virus (Lucy et al. 2000; Wang et al. 2004).  

Our data also demonstrate that both NLS domains are required for 2b protein to 

operate as an effective symptom determinant of CMV.  However, this is the first 

demonstration that they are required for symptom determination during an authentic 

CMV infection, rather than when wild-type and mutant 2b proteins are expressed 

from heterologous viruses.  Deletion of the N-terminal region of the 2b protein (in 

mutant CMVΔ5T) also rendered the virus unable to induce symptoms, indicating that 

this region is required for symptom induction.  It should be noted, though, that such a 

large deletion (seventeen amino acids) may have altered 2b protein function by 

affecting protein structure.  Interestingly, deletion of the sixteen C-terminal amino 

acids (in CMVΔ3T) did not attenuate symptom induction.  Rather, it seemed to alter 

the precise nature of symptoms in tobacco and slightly increase severity in N. 

benthamiana.  A previous study found that the region had transcriptional activation 

activity in yeast (Ham et al. 1999).  Our results suggest that in certain hosts, this 

region of the 2b protein may down-regulate symptom severity. 
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Symptom production and systemic movement by the Fny-CMVΔ2b mutant virus 

in non-transgenic and 2b-transgenic A. thaliana plants 

In this study and in previous work, we found that the Fny-CMVΔ2b mutant 

can spread systemically in A. thaliana ecotype Col-0 but induces no symptoms 

(Lewsey et al. 2007), which was consistent with work with the same mutant in 

tobacco and N. benthamiana (Table 1; Supp. Fig. 1).  However, Wang and colleagues 

(2004) noted that Fny-CMVΔ2b induces transient symptoms in squash. This finding 

was confirmed by our data and it was noted that Fny-CMVΔ2b has similar effects on 

C. quinoa and N. occidentalis and, surprisingly, on plants of the C24 ecotype of A. 

thaliana.  

 

The induction of symptoms in C24 plants by Fny-CMVΔ2b was investigated 

in greater detail.  It was observed that Fny-CMVΔ2b induced symptoms of leaf 

distortion, chlorosis and necrosis. However, new growth in these plants did not show 

clear symptoms, although these young tissues were systemically infected with Fny-

CMVΔ2b (Fig. 5).  This suggests that these host plants had adapted in some manner 

and had recovered from virus-induced disease, although this was not a true recovery 

from virus infection.  In contrast, A. thaliana ecotype C24 plants did not recover from 

disease caused by infection with wild-type Fny-CMV.  The symptoms induced by the 

wild-type virus were stronger than those induced by Fny-CMVΔ2b, or by wild-type 

Fny-CMV infection of plants of the Col-0 ecotype, and eventually resulted in death of 

the plants. 
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The 2b protein enhances systemic movement of CMV in several hosts and 

preliminary work using Fny-CMVΔ2b had indicated that it was required for efficient 

long-distance movement in A. thaliana (Soards 2003).  To further examine the 

functionality of the 2b protein expressed in 2b-transgenic plants we inoculated them 

with Fny-CMVΔ2b and monitored virus accumulation in directly inoculated and non-

inoculated leaves at various times.  In non-transformed A. thaliana plants Fny-

CMVΔ2b accumulated and spread less rapidly than wild-type Fny-CMV and induced 

no disease symptoms, similar to previous results seen in Fny-CMVΔ2b-infected 

tobacco (Soards et al. 2003).  However, in transgenic plants expressing the 2b protein 

of the Fny-CMV strain, Fny-CMVΔ2b accumulation and spread occurred as rapidly 

as for wild-type virus, although the amount of mutant virus that accumulated in non-

inoculated leaves was still less than that achieved by the wild-type CMV (Fig. 6A).  A 

previous report indicated that CMV infection ameliorated 2b-induced phenotype 

changes in 2b-transgenic tobacco (Praveen et al. 2008).  Contrastingly, we found that 

infection of Fny 2b-transgenic A. thaliana ecotype Col-0 plants with Fny-CMV 

resulted in extremely severe disease symptoms and that even infection with Fny-

CMVΔ2b exacerbated the stunting exhibited by the 2b-trangenic plants.  Transgenic 

expression of the LS 2b protein complemented movement of Fny-CMVΔ2b as 

effectively as Fny 2b protein.  More surprisingly, Fny-CMVΔ2b induced disease 

symptoms in these plants.  Since LS-CMV infection is essentially asymptomatic in A. 

thaliana ecotype Col-0 plants and transgenic expression of LS 2b protein causes only 

very mild changes in plant phenotype (Lewsey et al. 2007), the symptoms must have 

been caused by one or more gene products expressed by Fny-CMVΔ2b.  
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The 2b protein can induce symptoms but also facilitates symptom induction by 

other CMV gene products 
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The 2b protein of a severe CMV strain can induce symptoms autonomously of 

other CMV gene products (Lewsey et al. 2007; Lucy et al. 2000; Wang et al. 2004; 

Zhang et al. 2006) and the characteristics of 2b-induced symptoms depend upon 

specific domains within the 2b protein sequence (data from this study; Lucy et al. 

2000; Ham et al. 1999).  However, whereas expression of Fny 2b in transgenic Col-0 

plants induces strong disease-like phenotypes (this study; Lewsey et al. 2007; Zhang 

et al. 2006), this was not seen in the majority of lines created in the C24 background.  

Thus, the host background also conditions symptom induction by 2b proteins.  

Furthermore, a 2b protein, whether it originates from a severe or a mild strain, can 

also facilitate and sustain symptom induction by other viral gene products even when 

it induces no symptoms or symptom-like phenotypes of its own.  Thus, the 2b protein 

from LS-CMV, a strain that does not induce strong symptoms in A. thaliana, does not 

induce a strong symptom-like phenotype when expressed in transgenic plants. 

However, expression of 2b in transgenic plants converted a symptomless infection by 

Fny-CMVΔ2b into a severe infection.   

 

Taken together, our results indicate that although the 2b protein may be the 

predominant determinant of symptom induction, it is not the only CMV protein 

involved in symptom determination.  This is consistent with previous studies that 

have mapped determinants of CMV symptoms to all three genomic RNA segments 

and to all five known CMV protein genes (Palukaitis and García-Arenal 2003).  For 

example, work by Zhang et al. (1994) demonstrated that in tobacco symptoms were 

determined by both RNAs 1 and 2 of Fny-CMV.  However, the results obtained by 
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infecting  A. thaliana ecotype C24 plants and transgenic ecotype Col-0 plants 

expressing the 2b protein of LS-CMV with Fny-CMVΔ2b indicate that successful 

symptom induction and/or sustained induction of symptoms by other CMV gene 

products requires the 2b protein.   
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Interestingly, previous work has suggested that CMV may exert effects on 

RNA silencing and symptom induction that are not dependent solely upon the 2b 

protein itself.  It was shown that in transgenic N. benthamiana, infection by Fny-

CMVΔ2b could to some extent relieve the silencing of an amplicon derived from 

potato leafroll virus (Taliansky et al. 2004).  The subgroup II CMV strain Q-CMV, 

and 2b deletion mutants derived from it (Q-CMVΔ2b), do not induce strong disease 

symptoms in A. thaliana plants belonging to the Col-0 ecotype.  Remarkably, Diaz-

Pendon and colleagues (2007) found that both wild-type Q-CMV and Q-CMVΔ2b 

induced strong disease symptoms in mutant A. thaliana plants lacking functional 

genes for dicer-like (DCL) enzymes: specifically in double dcl 2/4 and triple dcl 2/3/4 

mutants.  These DCLs are largely responsible for RNA silencing-mediated resistance 

to viruses (Deleris et al. 2006).  Diaz-Pendon et al. (2007) argued that these results 

indicate that 2b is dispensable for symptom induction. However, our results 

demonstrate that the ability of 2b to induce symptoms in CMV-infected plants, or 

symptom-like phenotypes in transgenic plants, is both host plant specific and virus 

strain specific. Furthermore, even in plants where a given 2b protein has no symptom-

inducing activity it can still support or potentiate the symptom induction by other 

CMV gene products and it appears to be needed to prevent recovery of the plant.  Our 

work demonstrates that the 2b protein does not operate in isolation; rather, it is a key 

component of a complex, precision attack on plant development mounted by the virus. 
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Site-directed mutagenesis 

Targeted mutations of the 2b coding region were introduced into plasmids 

pFny209 (Rizzo and Palukaitis, 1990) and pBI121 Fny 2b (Lewsey et al., 2007) by 

site-directed mutagenesis using the Quick-Change II XL kit (Stratagene; 

http://www.stratagene.com/) according to the manufacturer’s instructions.  The 

sequences of primers used are detailed in Supp. Table 1. 

 

Plant growth and virus inoculation 

A. thaliana seeds were planted on a 4:1 compost/sand mixture and maintained 

at 21°C with an 8 h photoperiod.  Nicotiana spp., C. quinoa (Warwick HRI accession) 

and C. pepo seeds were planted on compost and maintained at 25 °C either in a 

greenhouse (with supplementary lighting) or in a custom built growth chamber with 

an 8 h photoperiod and a light intensity of 200 μmol.m-2.s-1 (Conviron; 

www.conviron.com). 

 

Infectious RNAs for Fny-CMV and mutants thereof were regenerated from 

infectious cDNA clones by in vitro transcription as described previously (Soards et 

al., 2002), using the combinations of plasmids described in Supplementary Supp. 

Table 2.  A. thaliana plants were inoculated with infectious transcripts at the 4 to 6 

leaf stage by applying solutions of transcripts to Carborundum-dusted leaves using a 

cotton bud.  Plants of all other species were inoculated at 2 to 5 weeks post-

germination by applying transcripts to Carborundum-dusted leaves using a roughened 

glass microscope slide.  Infection was confirmed in transcript-inoculated plants by 
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reverse transcription coupled to the polymerase chain reaction (RT-PCR).  To 

inoculate plants with infectious sap leaves from plants confirmed to be infected were 

ground in 0.1M potassium phosphate buffer (pH 7) and the clarified homogenate was 

applied to Carborundum-dusted leaves of plants with a gloved finger.    Virus 

purification was conducted by the method of Ng and Perry (2004) and inoculated to A. 

thaliana plants as per infectious transcripts, using a suspension of 100μg.ml-1 viral 

particles.  Infected plants were photographed with a Nikon Coolpix digital camera 

(http://www.nikondigital.com/main.html).  
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Experiments assessing symptom induction of Fny-CMV mutants in tobacco 

were conducted twice using infectious transcript inocula, with plants maintained in a 

greenhouse, and once using infectious sap, with plants maintained in a growth 

chamber.  These experiments were conducted twice in N. benthamiana using 

infectious transcript inocula, with plants grown in a greenhouse.  In A. thaliana the 

experiment was conducted once, with each virus inoculated onto 4-6 plants.  Results 

were consistent between plants of the same species inoculated with the same virus. 

 

RT-PCR and DNA sequencing 

RNA extraction and RT-PCR to detect Fny-CMV or mutants thereof was 

performed using primers flanking the 2b coding region, according to Ziebell et al. 

(2007).  PCR products were purified for sequencing by extraction from agarose gels 

using the Qiaquick gel extraction kit (Qiagen; http://www1.qiagen.com/).  Sequencing 

of purified RT-PCR products from wild-type and mutant CMV-infected plants and of 

mutant plasmids was performed by Geneservice Ltd. (http://www.geneservice.co.uk/). 
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Arabidopsis transformation 

Agrobacterium tumefaciens-mediated transformation was performed by floral 

dipping (Clough and Bent, 1998) and selection of transformants was conducted 

according to Lewsey et al (2007). 

 

Immunoblotting 

Immunoblotting for CMV coat protein was conducted according to Naylor et 

al. (1998) except that bound primary antibody was detected using an anti-rabbit 

horseradish peroxidase conjugate as the secondary antibody and visualized using 

Western Lightning enhanced luminol chemiluminescence reagent (PerkinElmer; 

http://las.perkinelmer.com) according to manufacturer’s instructions. 
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TABLES 1 

2 

3 

4 

 

Table 1  Symptoms induced by Fny-CMV variants in A. thaliana ecotype Col-0, N. 

benthamiana and tobacco. N/O indicates no obvious symptoms. 

Symptoms induced in host species 

Fny-CMV variant  
A. thaliana 

ecotype Col-0 
N. benthamiana Tobacco 

Wild type Fny-

CMV 

Stunting; leaf 

distortion 

Stunting; leaf 

distortion 

Stunting; leaf 

distortion; systemic 

mosaic 

Fny-CMVΔ2b N/O N/O N/O 

Fny-CMVΔ5T N/O N/O N/O 

Fny-CMVΔNLS1 N/O Mild stunting N/O 

Fny-CMVΔNLS2 N/O N/O N/O 

Fny-

CMVΔNLS1+2 
N/O N/O N/O 

Fny-CMVS40A Mild stunting Mild stunting 

Mild stunting; mild 

leaf distortion; mild 

systemic mosaic 

Fny-CMVS42A Mild stunting 
Mild stunting; mild 

leaf distortion 

Mild stunting; mild 

leaf distortion; mild 

systemic mosaic 

Fny-CMVΔKSPSE N/O N/O N/O 

Fny-CMVΔ3T 
Stunting; leaf 

distortion 

Stunting; leaf 

distortion; necrosis 

Leaf distortion; 

systemic mosaic; 

chlorosis 

 5 

6  
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Figure 1.  Schematic map describing locations of mutations, indicated by amino acid 

residue numbers, created in the 110 amino acid 2b protein of Fny-CMV.  Mutations 

were generated by site-directed mutagenesis using primers described in Supp. Table 1. 

 

Figure 2.  Symptoms induced by Fny-CMV variants in tobacco plants (A; scale bars 

5cm), N. benthamiana plants (B; scale bars 5cm) and A. thaliana ecotype Col-0 plants 

(C; scale bars 3cm).  Symptoms in tobacco and N. benthamiana were photographed 

approximately 5 weeks post-inoculation (wpi), whilst those of A. thaliana were taken 

approximately 3 wpi. 

 

Figure 3.  Confirmation of systemic infection by Fny-CMV variants in A. thaliana 

ecotype Col-0 (A) and N. benthamiana (B).  Non-inoculated tissue was tested for the 

presence of viral RNA by RT-PCR.  The identity of the virus is indicated above each 

lane.  The expected product size from Fny-CMVΔ2b was 370bp and the expected 

product from WT Fny-CMV is 664 bp (Ziebell et al., 2007).  “M” denotes lanes 

loaded with molecular weight marker and “-ve” denotes lanes containing the results of 

RT-PCR reactions conducted using RNA from mock-inoculated plants. 

 

Figure 4.  Symptoms induced by Fny-CMVΔ2b and Fny-CMV in A. thaliana 

ecotypes Wassilewskija (Ws), Landsberg erecta (Ler), Nössen (Nö) and RLD.  Plants 

were inoculated with purified virions. Infection was confirmed by RT-PCR using 

primers flanking the 2b coding region and symptoms observed at 19 dpi.  Scale bars 

indicate 3 cm. 
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Figure 5.  Symptoms induced by Fny-CMVΔ2b and Fny-CMV in A. thaliana ecotype 

C24.  Plants were inoculated with purified virions. Infection was confirmed by RT-

PCR using primers flanking the 2b coding region and symptoms observed at intervals 

up to 20 dpi (A; Scale bar indicates 3 cm).  Control plants were photographed at 21 

dpi (A; scale bars indicate 3cm).  Recovery from disease was photographed in Fny-

CMVΔ2b inoculated plants at 30 dpi (B; scale bar indicates 3 cm).  Newly emerged 

tissue exhibiting recovery from disease was tested for the presence of Fny-CMVΔ2b 

RNA by RT-PCR (C).  Lanes R1 and R2 contain RT-PCR products from recovered 

tissue of two independent plants; Lane I contains an RT-PCR product from directly 

inoculated tissue; Lane M contains a molecular weight marker, with 300, 400 and 600 

bp bands indicated.  The lane denoted “-ve” contains the results of an RT-PCR 

reaction conducted using RNA from a mock-inoculated plant.  

 

Figure 6.  Accumulation of Fny-CMV or Fny-CMVΔ2b in non-inoculated leaves of 

non-transgenic A. thaliana ecotype Col-0 and plants harboring the 35S:Fny2b 

transgene or 35S:LS2b transgene.  Plants were inoculated on three lower leaves with 

purified virions and non-inoculated leaves were collected for analysis.  The 

accumulation of Fny-CMV and Fny-CMVΔ2b in two independent lines (2.11C and 

2.30F) harboring the 35S:Fny2b transgene was assessed at 6, 12 and 21 dpi (A).  

Infecting viruses are denoted F (Fny-CMV), Δ (Fny-CMVΔ2b) and U (uninfected 

control).  M denotes marker lanes loaded with 1 μg of purified CMV.  X indicates 

non-loaded lanes.  Accumulation of Fny-CMVΔ2b in one 35S:Fny2b and one 

35S:LS2b line was assessed at 5, 7, 9 and 11 dpi (B).  Lanes loaded with protein from 

non-transgenic A. thaliana plants are labeled NT.  In both experiments proteins were 
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extracted, separated by SDS-PAGE and equal loading assessed by staining with 

Ponceau S.  CMV accumulation was analyzed by immunoblotting.  Each test lane 

represents a separate plant.  Individual plants were analyzed at one time point only. 
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Figure 7.  Confirmation of Fny-CMVΔ2b infection of plants harboring the 

35S:Fny2b and 35S:LS2b transgenes.  Plants of two independent transgenic lines 

harboring the 35S:Fny2b transgene (lines 2.11C and 2.30F), two independent 

transgenic lines harboring the 35S:LS2b transgene (lines 4.31A and 5.7D) and non-

transgenic A. thaliana ecotype Col-0 plants were inoculated with Fny-CMVΔ2b.  

Successful infection was confirmed by RT-PCR for Fny-CMVΔ2b RNA.  Lanes are 

labeled with the 2b-derived transgene the plant harbored, the identity of the 

independent line and a number indicating the specific plant tested.  Lanes M contain 

molecular weight markers, with 300 and 400 bp bands labeled.  The lane denoted “-

ve” contains a no RNA negative control RT-PCR. 

 

Figure 8.  Symptoms of infection by Fny-CMV and Fny-CMVΔ2b of plants 

harboring the 35S:Fny2b and 35S:LS2b transgenes.  Plants of two independent 

transgenic lines harboring the 35S:Fny2b transgene (lines 2.11C and 2.30F), two 

independent transgenic lines harboring the 35S:LS2b transgene (lines 4.31A and 

5.7D) and non-transgenic A. thaliana ecotype Col-0 plants were infected with Fny-

CMV, Fny-CMVΔ2b or mock-inoculated.  After one month, typical examples of 

infected plants (confirmed by RT-PCR; Fig. 6) were photographed.  The stunting of 

plants harboring the 35S:Fny2b or 35S:LS2b transgene induced by Fny-CMVΔ2b 

infection can be observed, as can the asymptomatic infection of non-transgenic A. 

thaliana by Fny-CMVΔ2b (row labeled NT).  Scale bars indicate 3 cm. 



Lewsey et al. MPMI 33 

 1 

2  



Lewsey et al. MPMI 34 

SUPPLEMENTARY TABLE 1 

2 

3 

4 

5 

6 

 

Supplementary Table 1  Sequences of primers used in site-directed mutagenesis of 

the Fny-CMV 2b coding region and the resulting mutations.  Nucleotide co-ordinates 

refer to the Fny-CMV RNA 2 sequence available from Genbank (accession 

NC_002035). 

Mutation Direction Primer sequences Mutation(s) 
made 

Forward CAA ACA GCG AAA GAA TTA TGG TGG AGG CGA AG Δ5T 
 Reverse CTT CGC CTC CAC CAT AAT TCT TTC GCT GTT TG 

Nucleotides 
2419 – 2469 
deleted 

Forward CGT ATG GAG GCG TCT CAC AAA CAG AAT CG ΔNLS1 

Reverse CGA TTC TGT TTG TGA GAC GCC TCC ACC ATA CG 

Nucleotides 
2482 – 2499 
deleted 

Forward GTC TCA CAA ACA GAA TGG TCA CAA AAG TCC CAG C ΔNLS2 
 Reverse GCT GGG ACT TTT GTG ACC ATT CTG TTT GTG AGA C 

Nucleotides 
2515 – 2526 
deleted 

Forward ΔNLS1 and ΔNLS2 Forward primers, sequentially ΔNLS1+2 

Reverse ΔNLS1 and ΔNLS2 Reverse primers, sequentially 

Nucleotides 
2482 – 2499 
and 2515 – 
2526 deleted 

Forward GAA CGA GGT CAC AAA GCT CCC AGC GAG AGA GCG S40A 
 Reverse CGC TCT CTC GCT GGG AGC TTT GTG ACC TCG TTC 

Nucleotides 
2536 – 2537 
changed from 
AG to GC 

Forward GGT CAC AAA AGT CCC GCC GAG AGA GCG CGT TCA S42A 

Reverse TGA ACG CGC TCT CTC GGC GGG ACT TTT GTG ACC 

Nucleotides 
2542 – 2543 
changed from 
AG to GC 

Forward CGG GAA CGA GGT CAC AGA GCG CGT TCA AAT ΔKSPSE 
 Reverse GAT TTG AAC GCG CTC TGT GAC CTC GTT CCC G 

Nucleotides 
2533 – 2547 
deleted 

Forward GAA GAC CAT GAT TTT TGA AAC CTC CCC TTC GGC Δ3T 

Reverse GCG GAA GGG GAG GTT TCA AAA ATC ATG GTC TTC 

Nucleotides 
2701 – 2748 

 7 

8  
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Supplementary Supp. Table 2 Combinations of plasmids from which transcripts 

were utilized to produce the Fny-CMV variants used during this study.  Variants of 

Fny-CMV were regenerated as previously described by Rizzo and Palukaitis (1990), 

but using transcripts from the combinations of plasmids described here. 

1 

2 

3 

4 

5  

Fny-CMV variant Plasmid combination required 

Wild-type Fny-CMV pFny109; pFny209; pFny309 

Fny-CMVΔ5T pFny109; pFny209:Δ5T; pFny309 

Fny-CMVΔNLS1 pFny109; pFny209:ΔNLS1; pFny309 

Fny-CMVΔNLS2 pFny109; pFny209:ΔNLS2; pFny309 

Fny-CMVΔNLS1+2 pFny109; pFny209:ΔNLS1+2; pFny309 

Fny-CMVS40A pFny109; pFny209:S40A; pFny309 

Fny-CMVS42A pFny109; pFny209:S42A; pFny309 

Fny-CMVΔKSPSE pFny109; pFny209:ΔKSPSE; pFny309 

Fny-CMVΔ3T pFny109; pFny209:Δ3T; pFny309 

Fny-CMVΔ2b pFny109; pFny209/M3; pFny309 
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Supplementary Figure 1.  Symptoms induced by Fny-CMV variants in non-

inoculated leaves of tobacco (scale bar 5 cm).  Tobacco plants were inoculated with 

infectious sap and symptoms were photographed approximately 5 weeks post-

inoculation (wpi). 

 

Supplementary Figure 2.  Symptoms induced in N. benthamiana by Fny-CMV 

variants, approximately 5 wpi.  Photographs are from a replicate experiment, where 

plants were inoculated later (age approximately 5 weeks post germination) than those 

used in the experiment shown in Supp. Fig. 1.  Scale bars indicate 5 cm. 

 

Supplementary Figure 3. Protein sequences of mutagenized Fny 2b constructs.  In 

2b Δ5T the codons encoding amino acids 2 and 9 were mutated to stop codons (*); 

translation of this construct is expected to start at the third start codon (M).  In the 2b 

Δ3T construct the codon corresponding to amino acid 95 has been mutated to a stop 

codon (*) and translation of this sequence is expected to stop at this amino acid. 

 

Supplementary Figure 4.  Phenotypic changes induced in transgenic A. thaliana 

ecotype Col-0 plants by 35S:Fny2b (B), 35S:Fny2b Δ3T (C) and 35S:Fny2b Δ3T 

constructs (D), compared to non-transgenic control (A).  Scale bars indicate 3 cm. 

 

Supplementary Figure 5.  Symptoms induced by Fny-CMV and Fny-CMVΔ2b in 

Chenopodium quinoa (panel A).  Panel B shows a close up of lesions induced by Fny-
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1 

2 

CMVΔ2b in directly-inoculated leaves.  Plants were photographed 5 weeks post-

inoculation.  Scale bar indicates 10 cm in panel A and 2 cm in panel B. 
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