22 research outputs found

    Arthritis in Idiopathic Inflammatory Myopathy:Clinical Features and Autoantibody Associations

    Get PDF
    Objective.To determine the prevalence, distribution, and clinical manifestations of arthritis in a cohort of patients with idiopathic inflammatory myopathies (IIM). Associations with autoantibody status and HLA genetic background were also explored.Methods.Consecutive patients with IIM treated in a single center were included in this cross-sectional study (n = 106). History of arthritis, 68-joint and 66-joint tender and swollen joint index, clinical features of IIM, and autoantibody profiles were obtained by clinical examination, personal interview, and review of patient records. High-resolution genotyping in HLA-DRB1 and HLA-DQB1 loci was performed in 71 and 73 patients, respectively.Results.A combination of patients’ medical history and cross-sectional physical examination revealed that arthritis at any time during the disease course had occurred in 56 patients (53%). It was present at the beginning of the disease in 39 patients (37%) including 23 cases (22%) with arthritis preceding the onset of muscle weakness. On physical examination, 29% of patients had at least 1 swollen joint. The most frequently affected areas were wrists, and metacarpophalangeal and proximal interphalangeal joints. Twenty-seven out of the 29 anti-Jo1-positive patients had arthritis at any time during the course of their illness; this prevalence was significantly higher compared to patients without the anti-Jo1 autoantibody (p &lt; 0.0001). No association of arthritis with individual HLA alleles was found.Conclusion.Our data suggest that arthritis is a common feature of myositis. It is frequently present at the onset of disease and it may even precede muscular manifestations of IIM. The most common presentation is a symmetrical, nonerosive polyarthritis affecting particularly the wrists, shoulders, and small joints of the hands. We have confirmed a strong association of arthritis with the presence of the anti-Jo1 antibody.</jats:sec

    Expression Profiling of Major Histocompatibility and Natural Killer Complex Genes Reveals Candidates for Controlling Risk of Graft versus Host Disease

    Get PDF
    Background: The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. Methodology/Principal Findings: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. Conclusions/Significance: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients

    The Tumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal Cells Is Controlled by the Recipients' Immune Response

    Get PDF
    Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1×106 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing

    Polyclonal Anti-T-Cell Therapy for Type 1 Diabetes Mellitus of Recent Onset

    No full text
    The destruction of pancreatic β-cells in type 1 diabetes mellitus is mediated by autoreactive T-lymphocyte clones. We initiated a prospective randomized controlled trial of polyclonal rabbit anti-T-cell globulin (ATG) in patients with type 1 diabetes within 4 weeks of diagnosis and with residual post-glucagon C-peptide levels still over 0.3 nmol/l. ATG was administered as an initial bolus of 9 mg/kg followed by 3 consecutive doses of 3 mg/kg. An interim analysis was performed to establish whether any significant changes in C-peptide production and insulin requirement had occurred that would justify the continuation of this pilot study. By May 2004, 11 subjects were assigned to treatment with ATG along with intensified insulin therapy and 6 to intensified insulin therapy with placebo, and were followed for a period of at least 6 months. During the first 12 months a significant difference in the insulin dose trends was found between the groups (p = 0.010) with a lower insulin dosage in the ATG group. There was also a difference in the glucagon stimulated C-peptide level trends of marginal significance (p = 0.068). Compared to values at screening, stimulated C-peptide levels significantly improved in the ATG group (p = 0.012) but not in the placebo group. Complete diabetes remission occurred in 2 patients in the ATG and in none of the placebo group. Glycosylated hemoglobin at 12 months tended to be lower in the ATG group (p = 0.088). Significant adverse effects of ATG treatment, mainly transient fever and moderate symptoms of serum sickness (7 and 6 subjects, respectively) were observed during the first month only. The interim analysis of this ongoing study suggests that short-term ATG therapy in type 1 diabetes of recent onset contributes to the preservation of residual C-peptide production and to lower insulin requirements in the first year following diagnosis

    The Exocytosis of Lytic Granules Is Impaired in Vti1b- or Vamp8-Deficient CTL Leading to a Reduced Cytotoxic Activity following Antigen-Specific Activation

    No full text
    Dressel R, Elsner L, Novota P, Kanwar N, Fischer von Mollard G. The Exocytosis of Lytic Granules Is Impaired in Vti1b- or Vamp8-Deficient CTL Leading to a Reduced Cytotoxic Activity following Antigen-Specific Activation. JOURNAL OF IMMUNOLOGY. 2010;185(2):1005-1014

    Charge injection and transport properties of an organic light-emitting diode

    No full text
    The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport

    4-Azafluorenone and α-Carboline Fluorophores with Green and Violet/Blue Emission

    No full text
    The emission properties of three 4-azafluorenone and five new &alpha;-carboline fluorophores in both solution and thin solid films were investigated. Fluorescence of the azafluorenone is clearly enhanced in thin solid films due to the presence of phenyl/biphenyl rotors, and these derivatives can be classified as green Aggregation-Induced Emission luminogens (AIEgens) with a non-emissive heteroaromatic core structure. Compared to azafluorenones, emission of &alpha;-carbolines is hypsochromically shifted to the blue region of the electromagnetic spectrum, and most of these derivatives exhibit strong violet-blue fluorescence in both solution and thin solid film layers. Further, the effective mobility and electroluminescence of new &alpha;-carbolines were investigated in prepared organic field-effect transistors and organic light-emitting diodes, respectively
    corecore