73 research outputs found

    Mucosa-Associated Microbiota in Barrett’s Esophagus, Dysplasia, and Esophageal Adenocarcinoma Differ Similarly Compared With Healthy Controls

    Get PDF
    INTRODUCTION: Alterations in the composition of the human gut microbiome and its metabolites have been linked to gut epithelial neoplasia. We hypothesized that differences in mucosa-adherent Barrett’s microbiota could link to risk factors, providing risk of progression to neoplasia. METHODS: Paired biopsies from both diseased and nonaffected esophagus (as well as gastric cardia and gastric juice for comparison) from patients with intestinal metaplasia (n 5 10), low grade dysplasia (n 5 10), high grade dysplasia (n 5 10), esophageal adenocarcinoma (n 5 12), and controls (n 5 10) were processed for mucosa-associated bacteria and analyzed by 16S ribosomal ribonucleic acid V4 gene DNA sequencing. Taxa composition was tested using a generalized linear model based on the negative binomial distribution and the log link functions of the R Bioconductor package edgeR. RESULTS: The microbe composition of paired samples (disease vs nondisease) comparing normal esophagus with intestinal metaplasia, low grade dysplasia, high grade dysplasia, and adenocarcinoma showed significant decreases in the phylum Planctomycetes and the archaean phylum Crenarchaeota (P \u3c 0.05, false discovery rate corrected) in diseased tissue compared with healthy controls and intrasample controls (gastric juice and unaffected mucosa). Genera Siphonobacter, Balneola, Nitrosopumilus, and Planctomyces were significantly decreased (P \u3c 0.05, false discovery rate corrected), representing \u3c10% of the entire genus community. These changes were unaffected by age, tobacco use, or sex for Crenarcha. DISCUSSSION: There are similar significant changes in bacterial genera in Barrett’s esophagealmucosa, dysplasia, and adenocarcinoma compared with controls and intrapatient unaffected esophagus. Further work will establish the biologic plausibility of these specific microbes’ contributions to protection from or induction of esophageal epithelial dysplasia. Includes supplemental file

    Composition of the Adult Digestive Tract Bacterial Microbiome Based on Seven Mouth Surfaces, Tonsils, Throat and Stool Samples

    Get PDF
    Background: To understand the relationship between our bacterial microbiome and health, it is essential to define the microbiome in the absence of disease. The digestive tract includes diverse habitats and hosts the human body's greatest bacterial density. We describe the bacterial community composition of ten digestive tract sites from more than 200 normal adults enrolled in the Human Microbiome Project, and metagenomically determined metabolic potentials of four representative sites. Results: The microbiota of these diverse habitats formed four groups based on similar community compositions: buccal mucosa, keratinized gingiva, hard palate; saliva, tongue, tonsils, throat; sub- and supra-gingival plaques; and stool. Phyla initially identified from environmental samples were detected throughout this population, primarily TM7, SR1, and Synergistetes. Genera with pathogenic members were well-represented among this disease-free cohort. Tooth-associated communities were distinct, but not entirely dissimilar, from other oral surfaces. The Porphyromonadaceae, Veillonellaceae and Lachnospiraceae families were common to all sites, but the distributions of their genera varied significantly. Most metabolic processes were distributed widely throughout the digestive tract microbiota, with variations in metagenomic abundance between body habitats. These included shifts in sugar transporter types between the supragingival plaque, other oral surfaces, and stool; hydrogen and hydrogen sulfide production were also differentially distributed. Conclusions: The microbiomes of ten digestive tract sites separated into four types based on composition. A core set of metabolic pathways was present across these diverse digestive tract habitats. These data provide a critical baseline for future studies investigating local and systemic diseases affecting human health

    Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation : The 2019 Expert Consensus From the Transplantion Society Working Group

    Get PDF
    With the development of modern solid-phase assays to detect anti-HLA antibodies and a more precise histological classification, the diagnosis of antibody-mediated rejection (AMR) has become more common and is a major cause of kidney graft loss. Currently, there are no approved therapies and treatment guidelines are based on low-level evidence. The number of prospective randomized trials for the treatment of AMR is small, and the lack of an accepted common standard for care has been an impediment to the development of new therapies. To help alleviate this, The Transplantation Society convened a meeting of international experts to develop a consensus as to what is appropriate treatment for active and chronic active AMR. The aim was to reach a consensus for standard of care treatment against which new therapies could be evaluated. At the meeting, the underlying biology of AMR, the criteria for diagnosis, the clinical phenotypes, and outcomes were discussed. The evidence for different treatments was reviewed, and a consensus for what is acceptable standard of care for the treatment of active and chronic active AMR was presented. While it was agreed that the aims of treatment are to preserve renal function, reduce histological injury, and reduce the titer of donor-specific antibody, there was no conclusive evidence to support any specific therapy. As a result, the treatment recommendations are largely based on expert opinion. It is acknowledged that properly conducted and powered clinical trials of biologically plausible agents are urgently needed to improve patient outcomes

    The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population

    Get PDF
    Genetic variation across the HLA is known to influence renal‐transplant outcome. However, the impact of genetic variation beyond the HLA is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with post‐transplant eGFR at different time‐points, out to 5‐years post‐transplantation. We conducted GWAS meta‐analyses across 10,844 donors and recipients from five European ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with non‐transplant eGFR, on post‐transplant eGFR. PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1‐year post‐transplant. 32% of the variability in eGFR at 1‐year post‐transplant was explained by our model containing clinical covariates (including weights for death/graft‐failure), principal components and combined donor‐recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR post‐transplant in the GWAS. This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a post‐transplant context. Despite PRS being a significant predictor of eGFR post‐transplant, the effect size of common genetic factors is limited compared to clinical variables

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p

    The Banff 2022 Kidney Meeting Work Plan:Data-driven refinement of the Banff Classification for renal allografts

    Get PDF
    The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell–mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.</p

    rs1004819 Is the Main Disease-Associated IL23R Variant in German Crohn's Disease Patients: Combined Analysis of IL23R, CARD15, and OCTN1/2 Variants

    Get PDF
    The IL23R gene has been identified as a susceptibility gene for inflammatory bowel disease (IBD) in the North American population. The aim of our study was to test this association in a large German IBD cohort and to elucidate potential interactions with other IBD genes as well as phenotypic consequences of IL23R variants. Genomic DNA from 2670 Caucasian individuals including 833 patients with Crohn's disease (CD), 456 patients with ulcerative colitis (UC), and 1381 healthy unrelated controls was analyzed for 10 IL23R SNPs. Genotyping included the NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007fsX1008 and polymorphisms in SLC22A4/OCTN1 (1672 C-->T) and SLC22A5/OCTN2 (-207 G-->C). All IL23R gene variants analyzed displayed highly significant associations with CD. The strongest association was found for the SNP rs1004819 [P = 1.92x10(-11); OR 1.56; 95 % CI (1.37-1.78)]. 93.2% of the rs1004819 TT homozygous carriers as compared to 78% of CC wildtype carriers had ileal involvement [P = 0.004; OR 4.24; CI (1.46-12.34)]. The coding SNP rs11209026 (p.Arg381Gln) was protective for CD [P = 8.04x10(-8); OR 0.43; CI (0.31-0.59)]. Similar, but weaker associations were found in UC. There was no evidence for epistasis between the IL23R gene and the CD susceptibility genes CARD15 and SLC22A4/5. IL23R is an IBD susceptibility gene, but has no epistatic interaction with CARD15 and SLC22A4/5. rs1004819 is the major IL23R variant associated with CD in the German population, while the p.Arg381Gln IL23R variant is a protective marker for CD and UC
    corecore