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Mucosa-Associated Microbiota in Barrett’s Esophagus,
Dysplasia, and Esophageal Adenocarcinoma Differ
Similarly Compared With Healthy Controls
Shajan Peter,MD1, AmandaPendergraft, PhD2,WilliamVanDerPol,MS3, C.MelWilcox,MD,MSPH1, Kondal R. KyanamKabir Baig,MD1,
Casey Morrow, PhD4, Jacques Izard, PhD5 and Peter J. Mannon, MD1

INTRODUCTION: Alterations in the composition of the human gutmicrobiome and itsmetabolites have been linked to gut

epithelial neoplasia. We hypothesized that differences in mucosa-adherent Barrett’s microbiota could

link to risk factors, providing risk of progression to neoplasia.

METHODS: Paired biopsies from both diseased and nonaffected esophagus (as well as gastric cardia and gastric

juice for comparison) from patients with intestinal metaplasia (n5 10), low grade dysplasia (n5 10),

high grade dysplasia (n 5 10), esophageal adenocarcinoma (n 5 12), and controls (n 5 10) were

processed for mucosa-associated bacteria and analyzed by 16S ribosomal ribonucleic acid V4 gene

DNA sequencing. Taxa composition was tested using a generalized linear model based on the negative

binomial distribution and the log link functions of the R Bioconductor package edgeR.

RESULTS: Themicrobe composition of paired samples (disease vs nondisease) comparing normal esophagus with

intestinal metaplasia, low grade dysplasia, high grade dysplasia, and adenocarcinoma showed

significant decreases in the phylum Planctomycetes and the archaean phylum Crenarchaeota (P <
0.05, false discovery rate corrected) in diseased tissue comparedwith healthy controls and intrasample

controls (gastric juice and unaffected mucosa). Genera Siphonobacter, Balneola, Nitrosopumilus, and

Planctomyces were significantly decreased (P < 0.05, false discovery rate corrected), representing

<10% of the entire genus community. These changes were unaffected by age, tobacco use, or sex for

Crenarcha.

DISCUSSSION: There are similar significant changes in bacterial genera inBarrett’s esophagealmucosa, dysplasia, and

adenocarcinoma compared with controls and intrapatient unaffected esophagus. Further work will

establish the biologic plausibility of these specific microbes’ contributions to protection from or

induction of esophageal epithelial dysplasia.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A311, http://links.lww.com/CTG/A312, http://links.lww.com/CTG/A313, http://

links.lww.com/CTG/A314

Clinical and Translational Gastroenterology 2020;11:e00199. https://doi.org/10.14309/ctg.0000000000000199

INTRODUCTION
Barrett’s esophagus (BE) is characterized by the development of
metaplastic columnar epithelium alongside the typical squamous
epithelium found at the gastroesophageal junction. This meta-
plasia is believed to confer risk of neoplastic transformation, but
delays in the diagnosis of esophageal adenocarcinoma (EAC),
occurring only after the onset of symptoms for instance, reduce
the survival significantly. Therefore, identifying the factors that

drive progression from Barrett’s metaplasia to neoplasia could
provide biomarkers that stratify risk and point out modifiable
targets for improving outcomes.

Microbes and their metabolic byproducts have been linked to
gut neoplasia including EACpresumedprogressing fromBE (1–5).
Patientswith refluxandBarrett’s esophagus are reported tohave an
altered luminal microbe composition, with increased relative
abundance of Gram-negative genera such as Fusobacterium,
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Bacteroides, and Veillonella, along with decreased relative abun-
dance of Streptococcus species (2,3,6,7). The normal esophagus
show relatively higher quantities of Streptococcus compared with
patients with excess esophageal acid exposure (type 2) who harbor
relatively more Gram-negative, anaerobic, and microaerophilic
organisms. However, there is a lack of data on whether there is a
progression of microbiome changes from healthy esophagus to
gastroesophageal reflux disease (GERD) to BE to EAC (4,8). Our
aimwas to test for differences in themucosa-associatedmicrobiota
that could be linked to dysplasia progression in the intestinal
metaplasia (IM)-neoplasia pathway.

MATERIALS AND METHODS
Sample collection and preparation

Fifty-two patients were enrolled, which included controls patients
(normal) (n 5 10) and patients with IM (n5 10), low grade dys-
plasia (LGD) (n5 10), high grade dysplasia (HGD) (n5 10), and
esophageal cancer (EAC) (n 5 12). These patients were selected
after endoscopic and histological confirmation of the respective BE
spectrum.Normal patients with no evidence of BEwere included as
controls. After obtaining informed consent and before the endos-
copy, demographics and clinical data were collected, including
height, weight, waist, hip circumference, and smoking status.

Exclusion criteria included a history of acute onset of reflux
symptoms, acute or chronic vomiting, or the use of antibiotics or
nonsteroidal anti-inflammatory drugs within the preceding 4 weeks
of collectionof biopsy samples.History of use of antacid,H2blocker,
proton-pump inhibitor, bismuth-containing compounds, for at least
2 weeks before sample collection was documented but were not
excluded. All subjects provided informed consent for obtaining
study specimens, and the study was approved by the Clinical Re-
search Ethics of the University of Alabama at Birmingham (IRB #
IRB-140109003). A sterilized endoscope was introduced directly
into the esophagus and stomach, avoiding the aspiration of fluid in
the oral cavity and esophagus and the introduction of water into the
stomach. The Barrett’s segment lengthwasmeasured as the distance
between the distal end and the squamocolumnar junction and
classified as per the Prague criteria for circumferential (C) and
maximal (M) dimensions (5). The presence of a hiatal hernia was
definedwhilemeasuring the distance from the diaphragmatic hiatus
and the distal end of the tubular esophagus.

Biopsies (2 from each site) of the Barrett’s/EAC and visibly
unaffected esophagus (3 cm cephalad) alongwith gastric secretions
and gastric cardia biopsies were obtained during medically in-
dicated endoscopy. In the stomach, up to 1 mL of gastric fluid was
aspirated for analysis in a sterile container as a comparator control
to represent swallowed and refluxedmicrobes. Esophageal samples
were collected first (Barrett’s then squamous) before stomach
samples (cardia and gastric juice) to minimize contamination of
the esophaguswith stomachbacteria. Biopsy forcepswere rinsed in
sterile water between samples. These collected samples were placed
immediately in Xpedition lysis and stabilization buffer (Zymo
Research, CA) and frozen at280°C until DNA extraction.

Microbiota analysis

Mucosa-associated microbes from paired samples were analyzed
for significant differences in bacterial communities between sites
(e.g., disease vs nondisease) and among diagnostic strata repre-
senting progression of disease from IM to LGD to HGD to ade-
nocarcinoma. DNA extraction using bead beating and
purification were performed using the QIAamp DNA Mini Kit.

Amplicon library for bidirectional (2 3 250 bp) sequencing on
the Illumina MiSeq platform was constructed using universal
primers 515f, 59-GTGCCAGCMGCCGCGGTAA-39 and 806r,
59-GGACTACHVGGGTWTCTAAT-39 targeted across 16S ri-
bosomal ribonucleic acid (rRNA) V4 gene hypervariable regions.
Multiplex polymerase chain reaction was used with bar codes for
96 samples including, in some runs, negative (no added DNA)
controls. PCR products were resolved on agarose gels; DNA was
isolated and purified using Qiagen kits and was then quantitated.
The products were sequenced on the MiSeq platform, a single
flow cell, single lane instrument that can generate approximately
9 Gb of sequence data from our paired end 250bp run (6). An
average of 37,411 reads per sample were obtained after quality
control steps. The sequence count table was rarefied to 18,483
sequences per sample tominimize the effects of uneven sampling.

Sequence curation and annotation

For the analysis of microbiome data, we have established an ana-
lytical pipeline based on the latest version of the Quantitative In-
sights intoMicrobial Ecology (QIIME) tool suite (7). The first step
in our analysis was to assess the quality of the raw data using fast
alignment quality check and then filter out low quality data using
the fast alignment X windows terminal emulator toolset. A com-
bination of tools within the QIIME suite were used for clustering
reads into operational taxonomic units (OTUs) (uclust), taxa as-
signment (Ribosomal Database Project) classifier using the
Greengenes 16S rDNA database (8–10) and as necessary, align-
ment and phylogenetic inference using PyNASTPython nearest
Alignment Space Termination (11) and Fasttree (12). To expedite
sample processing and reporting, we have built an automated
pipeline, Quick Microbiome data analysis pipeline (6).

16S rRNA gene sequence data were categorized as eukarya, ar-
chaea, mitochondria, or chloroplast, and unknown kingdoms were
removed. The final sequences were clustered into OTUs using a
97% identity cutoff using an average neighbor clustering algorithm.
Species-level identifications for OTUs of interest were determined
through searcheswithin the collection of 16S rRNA gene sequences
curated by the National Center for Biotechnological Information
(database built on June 16, 2016) using default megablast param-
eters and minimum e-values of 1.03 1025. Putative bacterial spe-
cies were reported for any OTUs with predominant sequences that
had greater than 99% sequence identities with those found in the
National Center for Biotechnological Information 16S rRNA gene
sequence database.

Selection of differentially abundant OTUs

Before differential abundance analysis, we identified potential
confounding factors that might influence results. Categorical
variables were assessed using the Fisher exact test; continuous
variables were assessed using the Kruskal-Wallis (KW) test or
one-way analysis of variance depending on the assumption of
normality as judged by the Shapiro-Wilk test (Table 1).

We performed differential abundance analysis using gener-
alized linear models based on the negative binomial distribution
and the log link function as incorporated in the R Bioconductor
package edgeR to assess the phylum- and genus-level OTUs found
to have a mean relative abundance .0.01% (13). Moderated
tagwise dispersion was estimated for each OTU before model
fitting through an empirical Bayesian framework with previous
degrees of freedom equated to 10 shrinking toward common
dispersion. Trimmed mean of M-values normalization was used
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to satisfy the assumption that most OTUs are not differentially
abundant between incremental fluctuations in disease pro-
gression. To account for the multiplicity of samples drawn from
individuals, unique patient identifiers were incorporated on the
right-hand side of design matrices capturing within-individual
variability. Diagnosis was ranked from 0 (normal) to 4 (EAC) to
generate an independent variable capable of capturing the effect
disease progression. Age, sex, and smoking history were in-
corporated into the models so to explicitly adjust for de-
pendencies between the confounders determined to significantly
discriminate groups.

To compensate for multiple testing, all P-values were updated
with a Benjamini-Hochberg (false discovery rate) adjustment to
yield q-values. In the event, a q-value was found to be less than the
threshold of 0.10, pairwise comparisons across diagnosis were
considered to emphasize the contrasts supporting the omnibus
differences in differential abundance. All differential abundance
analyses were performed using R Project for Statistical Com-
puting v 3.5.0.

Data analysis

The Mann-Whitney U test was performed to compare the vari-
ables of 2 sample groups.Multiple group comparisons weremade
using the KW test. The Fisher exact test performed on categorical
variables. P , 0.05 was taken as statistical significance. The
P values obtained were adjusted for multiple comparisons by the
false discovery rate method. The corresponding q , 0.05 was
taken as statistical significance. Tests were performed using R
Project for Statistical Computing V.3.3.1.

A model based on the Dirichlet-multinomial distribution
and the log link function as incorporated in the R Bioconductor
package Human Microbiome Project was used to test for vari-
ability in the composition of phylum- and genus-level OTUs
found to have a relative abundance . 0.01% (14). This model
contrasts OTUs via a generalized Wald-type test statistic so to
identify groups or sites in which the vectors of estimated mean
relative abundances not equal.

Visualizations of alpha diversity (diversity within the sample)
using different metrics including Shannon, Chao, and Simpson

Table 1. Patient demographics and clinical characteristics

Description Controls IM LGD HGD Esophageal cancer

n 12 9 12 10 10

Age, mean (SD) 52.2 (11.0) 57.6 (10.1) 57.1 (13.6) 67.2 (13.7) 64.9 (9.0)

Race n (%) AA 4 (33.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

W 8 (66.7) 9 (100.0) 12 (100.0) 10 (100.0) 10 (100.0)

Sex n (%) F 6 (50.0) 1 (11.1) 4 (33.3) 0 (0.0) 1 (10.0)

M 6 (50.0) 8 (88.9) 8 (66.7) 10 (100.0) 9 (90.0)

BMI, mean (SD) 30.0 (7.0) 29.2 (4.9) 31.1 (5.8) 27.7 (2.6) 28.1 (5.1)

Tobacco use, n (%) Current 1 (8.3) 1 (11.1) 0 (0.0) 5 (55.6) 4 (40.0)

Former 1 (8.3) 4 (44.4) 1 (9.1) 4 (44.4) 2 (20.0)

Never 10 (83.3) 4 (44.4) 10 (90.9) 0 (0.0) 4 (40.0)

Gastrointestinal reflux disease, n (%) No 3 (25.0) 0 (0.0) 3 (25.0) 3 (33.3) 2 (20.0)

Yes 9 (75.0) 9 (100.0) 9 (75.0) 6 (66.7) 8 (80.0)

Hypertension, n (%) No 7 (58.3) 4 (44.4) 6 (50.0) 5 (55.6) 6 (60.0)

Yes 5 (41.7) 5 (55.6) 6 (50.0) 4 (44.4) 4 (40.0)

Diabetes mellitus, n (%) No 8 (66.7) 9 (100.0) 8 (66.7) 8 (88.9) 5 (50.0)

Yes 4 (33.3) 0 (0.0) 4 (33.3) 1 (11.1) 5 5 (50.0)

Hyperlipidemia, n (%) No 6 (50.0) 5 (55.6) 7 (58.3) 5 (55.6) 4 (40.0)

Yes 6 (50.0) 4 (44.4) 5 (41.7) 4 (44.4) 6 (60.0)

Coronary artery disease, n (%) No 11 (91.7) 8 (88.9) 11 (91.7) 5 (55.6) 9 (90.0)

Yes 1 (8.3) 1 (11.1) 1 (8.3) 4 (44.4) 1 (10.0)

Yes 0 (0.0) 0 (0.0) 0 (0.0) 1 (11.1) 9 (90.0)

Hiatal hernia, n (%) No 7 (58.3) 5(55.6) 7 (58.3) 6 (66.7) 9 (90.0)

Yes 5 (41.7) 4 (44.4) 5 (41.7) 3 (33.3) 1 (10.0)

Prague_Criteria_C, median, cm (IQR) NA 2.0 (0.0, 7.0) 4.5 (2.5, 8.5) 5.0 (3.0, 6.8) 4.0 (3.0, 7.0)

Prague_Criteria_M, median, cm (IQR) NA 3.0 (1.0, 8.0) 6.0 (3.5, 10.3) 6.0 (4.0, 7.8) 5.0 (4.5, 8.0)

Length of segment (%) Long (.3 cm) NA 3 (37.5) 9 (75.0) 8 (88.9) 5 (83.3)

Short (,3 cm) NA 5 (62.5) 3 (25.0) 1 (11.1) 1 (16.7)

HGD, high grade dysplasia; IM, intestinal metaplasia; IQR, interquartile range; LGD, low grade dysplasia.
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Table 2. 16S sequence library size among patient groups

Cancer HGD IM LGD Control

Shapiro-

wilks (site) P Test

Abnormal (1)

Mean (SD) 17,112.9

(12,716.0)

17,368.2

(11,228.0)

17,709.0

(7,259.3)

13,153.0

(6,759.9)

NA 0.0008 0.57 KW

Median [IQR] 13,686.5

[6,692–49,547]

17,400.5

[3,524–38,901]

16,203

[7,633–30,140]

11,372

[6,470–29,523]

NA

Abnormal (2)

Mean (SD) 13,518.8

(5,783.0)

18,782.9

(9,633.0)

13,737.3

(9,382.3)

14,314.5

(6,983.0)

NA 0.2922 0.46 ANOVA

Median [IQR] 13,766

[4,269–24,127]

17,212

[6,437–38,808]

11,320

[3,174–28,900]

14,962

[2,057–22,297]

NA

Cardia

Mean (SD) 12,112.9

(8,038.3)

16,345.8

(17,628.5)

19,593.2

(13,726.4)

11,402.9

(7,756.0)

16,106.0

(9,417.8)

,0.0001 0.69 KW

Median [IQR] 12,692

[3,723–25,162]

9,688

[4,366–67,934]

17,612.5

[3,831–40,438]

9,319

[1,347–25,060]

15,104

[3,392–31,834]

Gastric juice

Mean (SD) 17,271.9

(12,365.1)

16,476.2

(8,681.2)

15,478.9

(10,562.9)

21,690.3

(7,339.2)

15,323.4

(12,126.3)

0.0582 0.67 ANOVA

Median [IQR] 15,415.5

[4,435–40,057]

17,978

[2,668–31,670]

14,392.5

[3,190–37,279]

20,953

[12,183–31,714]

12,145.5

[1,986–43,029]

Normal (1)

Mean (SD) 18,016.8

(10,885.7)

15,106.8

(7,932.8)

10,824.4

(4,791.6)

14,467.7

(9,122.2)

9,854.8

(7,386.3)

0.0113 0.27 KW

Median [IQR] 16,737.5

[5,463–33,210]

12,995

[4,596–27,492]

10,119

[5,082–19,923]

12,954

[72–27,480]

7,581.5

[1,005–26,679]

Normal (2)

Mean (SD) 14,072.3

(10,875.8)

19,644.3

(7,676.9)

17,988.4

(10,022.8)

16,877.1

(5,411.3)

12,904.7

(4,881.7)

0.1561 0.29 ANOVA

8,415

[2,126–33,698]

17,469

[6,982–34,215]

19,084

[4,714–36,203]

17,186

[6,231–24,615]

11,814

[6,504–22,512]

Shapiro-Wilks (group) 0.0003 0.0017 0.5061 0.0013 ,0.0001

P 0.7854 0.5452 0.1195 0.5396 0.256

Test KW KW ANOVA KW KW

Shapiro-Wilks test of

normality (omnibus)

,0.0001

KW P-value for group diff 0.3323

Wilcoxon rank sum P-values for pairwise comparisons and group differences (BH adjustment)

Cancer Controls HGD IM

Controls 0.72 — —

HGD 0.72 0.99 — —

IM 0.72 0.99 0.99 —

LGD 0.72 0.39 0.44 0.39

KW P-value for sample site diff 0.382
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indices and beta diversity (diversity between samples) using Bray
Curtis and UniFrac are also presented. Samples were grouped by
user defined variables and significant differences between groups
are determined by performing a per mutational multivariate
analysis of variance test on each of the beta diversity indices.
Furthermore, a KW test is performed to identify key taxa whose
changes in relative abundances between groups are playing a
significant role in driving the overall group differences. These
statistical tests were performed using tools within the QIIME
package (7).

RESULTS

Patient demographics and clinical characteristics

The BE and cancer patients were predominantly white men, al-
though the control group was split evenly between men and
women, providing some samples in the control group to assess the
effect of sex on the esophageal microbiota (Table 1). Patients with
HGD and esophageal cancer tended to be older on average. There
were no significant differences among groups by bodymass index,
the presence of GERD, hypertension, diabetes, coronary artery
disease, or hyperlipidemia. However, the absence of tobacco use
was significantly different among the groups, being high in con-
trols (83%never smokers) and low in certain dysplasia and cancer
groups (0%–40% never smokers), although LGD group subjects
had a 91% rate of never smoker status. The characteristics of the
BE (prague criteria-segment length) also were not significantly
different between the groups (although these data may not be
normally distributed). Given some significant differences in ex-
posures such as tobacco and age among the groups, these variable
effects on esophageal microbiota composition were tested sepa-
rately Figure 4).

Microbiota composition between biopsy sites within individuals

and within groups

Because we had replicate samples of unaffected and diseased
mucosa from each subject, we were able tomeasure the inherent
variability in our data because of our methodology and design.
The variability of 16S sequencing data was compared between
replicate biopsies from individual subjects. There were no
significant differences in library size among biopsies from
sample sites within patient groups (Table 2) or specific to
sample sites themselves (unaffected vs diseased within in-
dividual patients). Of note, the overall relatively low library
sizes (compared with stool samples for instance) reflect the
smaller numbers of mucosa-associated microbes that are

recovered from individual endoscopic biopsies and small vol-
umes of gastric secretions.

The composition of the mucosa-associated microbiota based
on 16S sequencing in paired unaffected biopsies within the same
patient was stable at the phylum level within the same histologic
groups. For instance, across phyla, 50% of absolute count dif-
ferences were less than or equal to 0.0% and 75% of absolute
differences were less than or equal to 31.0. Based on this finding of
low variability between replicate samples, we combined paired
unaffected and diseased samples within an individual patient
rather than analyze each of the replicate biopsy samples
separately.

Overall measures of diversity, including alpha diversity (in-
cluding Shannon and inverse Simpson index and Chao1 esti-
mates) and beta diversity (Bray-Curtis) showed no significant
differences between sites or groups (see Figures 1 and 2, Sup-
plementary Digital Content 1 and 2, http://links.lww.com/CTG/
A311 and http://links.lww.com/CTG/A312). At the phylum level,
the bacterial composition was similar to that reported for the oral
cavity with the largest mean percentages belonging to Firmicutes
(47.81%), Proteobacteria (20.67%), Bacteroidetes (16.93%),
Actinobacteria (5.57%), and Fusobacteria (4.76%) (Figure 1). At
the genus level, upper gastrointestinal tract genera like Lactoba-
cillus, Streptococcus, and Prevotella were dominant but the high
frequency of Tissierella, an isolate usually associated with fecal
sources, was unexpected yet consistent throughout samples in-
cluding healthy controls. The largest mean percentages by com-
position were Tissierella soehngenia (16.67%), Lactobacillus
(7.15%), Streptococcus (7.27%), Acinetobacter (5.80%), and Pre-
votella (5.24%) (Figure 2).

Microbiota composition differences among control, Barrett’s

metaplasia, and esophageal cancer biopsies

Analysis of OTUs obtained by sequencing of 16S rRNA genes
from controls to IM to dysplasia and finally cancer provided a
number of phyla and genera, which were down or up, regulated
among the histologic groups as per the disease gradient. Using a
cutoff of 0.1 for the q-value assigned to results with P-values
,0.05, there were 2 phyla containing 3 genera, which had con-
tinuous, unidirectional negative-fold changes from IM, LGD,
HGD, and EAC compared with the healthy control group. Phy-
lum Planctomycetes (containing genus Planctomyces, neither
Gram-positive or negative, lacking cell wall peptidoglycan and
displaying anaerobic metabolism) was decreased in all groups
compared with controls but significantly so in HGD and cancer.

Table 2. (continued)

Wilcoxon rank sum P-values for pairwise comparisons for sample site diff (BH adjustment)

ABNL (1) ABNL (2) Cardia Gastric juice Normal (1)

ABNL (2) 0.87 — — —

Cardia 0.68 0.76 — — —

Gastric juice 0.87 0.76 0.68 — —

Normal (1) 0.68 0.68 0.87 0.68 —

Normal (2) 0.87 0.76 0.68 0.94 0.68

ABNL, abnormal; HGD, high grade dysplasia; IM, intestinal metaplasia; KW, Kruskal-Wallis; IQR, interquartile range; LGD, low grade dysplasia.
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Phylum Crenarchaeota (containing genus Nitrosopumilus) was
similarly decreased. Genus Balneola (an aerobic Gram-negative
bacterium in the family Crenotrichaceae but in the phylum
Bacteroidetes) was also found to be decreased across disease
groups, significantly in the HGD samples. When looking at

relative abundance of microbes among groups, the trend was
similar to that seen in fold changes of absolute numbers of mi-
crobes (see Figure 3 and Table 1, Supplementary Digital Contents
3 and 4, http://links.lww.com/CTG/A313, http://links.lww.com/
CTG/A314). These same fold changes in microbial phyla and

Figure 1. Compositional bar plots of mean relative abundance at the phylum-level of taxonomy. Normal and abnormal tissue samples are presented from
patients diagnosed with Barrett’s cancer, high grade dysplasia, low grade dysplasia, and intestinal metaplasia along with normal tissue samples from
controls. The largest percentages of observations on average were determined to be Firmicutes (47.81%), Proteobacteria (20.67%), Bacteriodetes
(16.93%), Actinobacteria (5.57%), and Fusobacteria (4.76%).

Figure 2. Compositional bar plots of mean relative abundance at the genus-level of taxonomy. Normal and abnormal tissue samples are presented from
patients diagnosed with Barrett’s cancer, high grade dysplasia, low grade dysplasia, and intestinal metaplasia along with normal tissue samples from
controls. The largest percentages of observations on average were determined to be Tissierella Soehngenia (16.67%), Lactobacillus (7.15%),
Streptococcus (7.27%), Acinetobacter (5.80%), and Prevotella (5.24%).
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genera were also seen when similar tests were performed between
the diseased and unaffected esophageal biopsies within the same
patient; in addition, these changes persistedwhendisease biopsies
were compared with gastric juice samples and gastric cardia bi-
opsies (data not shown) (Figure 3).

Effects of smoking, disease status, and sex on mucosa-

associated microbiota in controls and Barrett’s metaplasia

We adjusted for potential confounders and factors believed to
influence the progression frommetaplasia to neoplasia including
age, sex, and smoking history. Figure 4 shows the effects of in-
dividual variable stratification on the changes in the phylum-level
microbial compositions from controls to EAC. After stratifying
the data according to tobacco use, decreases in both phyla were
again noted at the P and q value cutoff (and significant decreases
in multiple other phyla are also noted) while adjusting for age
somewhat decreases the significance levels of their differences at
the q-value cutoff. Phylum Planctomycetes seems to be more
sensitive to stratification by age than phylum Crenarchaeota be-
cause only the latter phylum was still significantly decreased
compared with control samples (data not shown for sex). The
significant decrease in the 3 genera (Balneola, Nitrosopumilus,
and Planctomyces) was also unaffected by adjusting for tobacco
use history (data not shown).

DISCUSSION
Themost widely accepted risk factors for BE and EAC are chronic
gastroesophageal reflux and associated conditions, such as
hiatal hernia or esophagitis (15). Chronic reflux can induce
esophageal mucosal damage that may create inflammatory mi-
croenvironments that promote dysplasia and carcinogenesis.
This microenvironment is further influenced by various factors
such as diet, race, body mass index, and medications (16).

Interestingly, the increasing incidence of BE and EAC has been
associated with improved sanitation and the consequent decrease
in gastric Helicobacter pylori, mainly in the West (17,18). Al-
though the inverse correlation between EAC incidence and H.
pylori infection may relate strictly to decreased acid output
(hypochlorhydria) and reflux, H. pylori colonization also signif-
icantly alters the native gastric and esophageal flora. Moreover,
the bacterial community of the normal esophagus changes in
patients with reflux-related disorders including BE and exposure
to proton-pump inhibitor therapy (19).We did not document the
H. pylori status before enrollment in the study. The composition
of the human gut microbiota changes with, and may influence,
many human diseases, including gastrointestinal cancer de-
velopment. The esophagus contains a complex population of
resident microbes that changes in patients with reflux-related
disorders or BE compared with healthy individuals (18). These
findings supported a proposal to group the microbiome com-
position into 2 categories labeled as “type I and type II”. Type I,
the normal esophagus, was populated with high quantities of
Streptococcus compared with patients with excess esophageal
acid exposure, type II, which contained a higher proportion of
Gram-negative, anaerobic, and microaerophilic organisms. This
information suggests that Gram-positive bacteria dominate the
healthy esophageal microbiome, whereas GERD produces a shift
in the microbiome to increased numbers of Gram-negative and
anaerobic bacteria (20). A study using the Cytosponge technique
including other tissue samples to evaluate the microbial profile at
different stages of Barrett’s carcinogenesis showed decreased
microbial diversity and altered community composition associ-
ated with disease: decreases in Gram-negative (Veillonella, Meg-
asphaera, and Campylobacter) and Gram-positive (Granulicatella,
Atopobium, Actinomyces, and Solobacterium) taxa with increased
Lactobacillus fermentum (2). Analysis of microbial samples

Figure 3. Comparison of mean number of reads observed in samples of the OTUs by histologic diagnosis found across increasing histologic severity based
on a q-value ,0.10. The diagnosis groups are represented as control (red), intestinal metaplasia (orange), low grade dysplasia (yellow), high grade
dysplasia (green), and EAC (purple). *q-value ,0.10, **q-value ,0.05, ***q-value ,0.01. EAC, esophageal adenocarcinoma; OTU, operational
taxonomic unit.
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obtained using the Cytosponge seems to differ from biopsy- or
brush-obtained samples and may represent background by both
gastric and oral bacteria. However, these studies have not shown
significant differences in the microbiota from samples of BE or
EAC compared with nearby unaffected esophageal tissue (21,25).
Our data show significant decreases in a small group of organisms
in Barrett’s esophageal metaplasia, but these changes do not in-
tensifywithprogressionalong thepathofworsening dysphagia and
frank neoplasia. There have been several proposedmechanisms by
which the esophagealmicrobiota could affect the progression of IM
and the subsequent development of dysplasia to EAC. The levels of
acid exposure could have an indirect influence on microbial
composition of the esophagus because different bacteria thrive in
unique, niche microenvironments. On the other hand, an indi-
vidual’s uniquemicrobiome and the associatedmicrobial milieu of
the lower esophagus may predispose certain people to develop
esophagitis or IM in the presence of excessive levels of refluxed
stomach acid (3,20). Microbial-derived metabolic products influ-
encing the host immunologic response has also been proposed as a
mechanism by which the microbial environment exerts a proin-
flammatory effect on the esophageal lining. Environmental or di-
etary factors related to obesity can result in change in the
microbiome of esophagus affecting the stem cell biology and
thereby susceptibility to carcinogenesis (22). The paradigm of
microbial-promoting gastrointestinal tumorigenesis is focused on
microbial-epithelial-immune interaction and the effects of micro-
bial metabolism producing protumor effects (21).

Toll-like receptors (TLRs) mediate some of the interactions
between the immune system and the esophageal microbiome
potentially driving a chronic inflammatory response. (20,23)

Increased expression of TLRs 1–3,6,7,9 may act to mediate
pathogenic microbial interaction of the innate immune systems
as seen in a rat model for EAC, whereas TLRs 1,2,4,6,9 (partic-
ularly TLR-4) have been found to be overexpressed in human
EAC samples (23–29). Flagellated bacteria could activate TLR5.
Bacterial DNA has also found to promote invasion in in vitro
models. The release of biochemical mediators that affect the to-
nicity of the lower esophageal sphincter is a proposedmechanism
by which the esophageal microbiome can exert a direct effect on
the development of BE. Bacterial invasion of the esophagus and
gut in general could induce an inflammatory response that in-
volves up-regulation of cytokines, such as IL-17 and IL-23, which
can promote tumor development (20). Lipopolysaccharide is
found in the outer membrane of Gram-negative bacteria and has
been shown to be increased in the lower esophagus of patients
with esophagitis and BE (type II microbiome) (30). Lipopoly-
saccharide can upregulate gene expression via the TLR-4 andNF-
kB pathways leading to increased expression of inflammatory
cytokines (31). This can also indirectly exacerbate reflux via in-
duction of nitric oxide synthesis (for relaxation of the lower
esophageal sphincter) and production of cyclooxygenase 2 (for
delayed gastric emptying) (32–34).

Our data have identified a small number of genera and phyla
that are consistently associated with decreased absolute number
of organisms when comparing normal control tissue with IM,
dysplasia, and frank neoplasia. For instance, there was a decrease
in frequency of phylum Planctomycetes/genus Planctomyces (an
environmentally derived commensal) and phylum Cren-
archaeota (containing genus Nitrosopumilus, ammonia oxidiz-
ing archaean) was similarly decreased. Planctomycetes microbes

Figure 4. Downregulation of taxa (by log fold-change) across disease progression at phylum-levels of taxonomy phylum-level taxa adjusted for sex (left),
tobacco use (right). log2FC, log2 fold changes; OTU, operational taxonomic unit.
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have been isolated at low levels in the human gut microbiota in a
few studies. The factors driving this diversity is unknown and
could be related to a resistance to antibiotics such peptidoglycan
inhibitors (35). Interestingly, this phylum seemedmore prevalent
in noncancer specimens compared with those with cancer (rec-
tum) signifying an inverse relationship to tumorigenesis, con-
sistent with its apparent loss in the samples of BE to EAC perhaps
(36). The finding of Crenarchaeota in the human gutmicrobiome
has also been reported, especially the species Sulfolobus, an ob-
ligate aerobe which can reduce sulfur particularly under acidic
conditions (37–40); the anaerobic methane-producing Cren-
archaeota may also be included in this group because they have
been found in the oral cavity from subgingival plaques. The
oxidation of ammonia to nitrite and nitrate is also of potential
interest because these compounds may have pleiotropic effects
in carcinogenesis so that a loss could be proposed to introduce
an imbalance in locally regulated inhibitory compounds. Phy-
lum Planctomycetes seems to be more sensitive to stratification
by age and sex than phylum Crenarchaeota. We did not notice a
difference by adjusting for tobacco use history and thereby
pointing out to an irrelevant correlation in this cohort. Despite
some limitations by the small sample size, we obtained samples
under direct observation from patients with biopsy proven
categories of BE to EAC representing the disease progression
spectrum.We tried to avoid contamination and used samples of
gastric juice and adjacent squamous esophagus from the same
cases to control for background microbial communities that
would help identify disease-associated changes. We used the
normal controls and replicate samples to facilitate removal of
false OTUs that could lead to false discovery especially when
considering the areas studied with expected low microbial bio-
mass (41). One of the limitations of the data analysis is that given
the low numbers of bacteria isolated from esophageal endo-
scopic biopsies, the conventional means of adjusting for false
discovery may not adequately address the low numbers of reads
and have the potential to overweight scarce taxa. The small
sample size limited our ability to adjust for all the patient level
factors mentioned.

Overall, our data identify significant changes in a small
number of genera and phyla that track across the progression
from normal esophageal mucosal microbial communities
through IM and dysplasia to neoplasia. These observations will
need to be confirmed and their biologic plausibility tested by
accompanying studies of the transcriptome and metabolome of
these communities and in vitro exposure using relevant gnoto-
biotic collections with epithelial models.

CONFLICTS OF INTEREST

Guarantor of the article: Shajan Peter, MD.
Specific author contributions: S.P.—design, coordination, patient
enrollment acquisition and interpretation of data, literature review,
analysis, interpretation, and drafting of the article.
A.P.—interpretation of data and statistical analysis. WVDP—data
informatics and analysis. C.M.W.—patient enrollment and sample
data collection. K.R.K.K.B.—patient enrollment and sample data
collection. C.M.—intellectual content, design and coordination of the
study, interpretation of data, and revision of manuscript for
intellectual content. J.I.—intellectual content and critical review of
analysis. P.M.—intellectual content, design and coordination of the
study, acquisition, analysis, and interpretation of data and final
approval of the manuscript.

Financial support:University of Alabama internal research funding.
Potential competing interests: None to report.

ACKNOWLEDGEMENTS
The following are acknowledged for their support of the Micro-
biome Resource at the University of Alabama at Birmingham:
Comprehensive Cancer Center (P30AR050948), Center for
Clinical Translational Science (UL1TR001417), University Wide
Institutional Core, Heflin Center for Genomic Sciences and
Microbiome Center. University of Alabama Health Service
Foundation General endowment fund (UABHSF GEF).

Study Highlights

WHAT IS KNOWN

3 The prevalence of BE and progression to EAC has been
increasing.

3 BE proceeds from advancing dysplasia to neoplasia.
3 Microbes may contribute to induction of or protection from

neoplasia.

WHAT IS NEW HERE

3 Two oral and gastrointestinal tract microbial phyla are
significantly decreased in BE metaplasia and esophageal
adenocarcinoma.

3 The findings are well controlled by using adjacent unaffected
tissue and independent healthy controls.

3 The methods focus on mucosal-adherent microbes directly
obtained.

TRANSLATIONAL IMPACT

3 These organisms have knownmetabolite production that can
affect carcinogenesis.

3 These microbes can be studied in vitro for effects on
esophageal tissue/organoids to discover mechanisms of
action and test interventions.

3 Preventing progression of BE to neoplasia will change the
natural history of this disease.
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*Table 1. Negative log2(FC) in the table shows that the microbe counts are down-

regulated in the group compared to controls.   

 
 Log2(FC) p-value q-value 
Control-High Grade Dysplasia    
g__Nitrosopumilus -7.9846 0.0002 0.0194 
g__Balneola -5.9575 0.0013 0.0477 
g__Planctomyces -4.3444 0.0046 0.0905 
p__Planctomycetes -2.6196 0.0037 0.0337 
p__Crenarchaeota -3.6888 0.0187 0.0889 
Control-Barrett’s Cancer    
p__Planctomycetes -2.9696 0.0012 0.0229 
p__Crenarchaeota -4.5629 0.0053 0.0505 
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