4 research outputs found

    Forebrain Ischemic Stroke and the Phenomenon of Ischemic Tolerance: Is Homocysteine Foe or Friend?

    Get PDF
    Hyperhomocysteinemia (hHCy) is a recognized comorbid risk factor of human brain stroke. We overview here the recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy‐related neuropathologies. In context of our results which detected an increased oxidative stress in hyperhomocysteinemic rats, we discuss here the role of free radicals in this disorder. Brain ischemia‐reperfusion causes delayed neuronal death. Ischemic tolerance evoked by preconditioning (IPC) represents a phenomenon of central nervous system (CNS) adaptation to any subsequent ischemia. The paper describes changes in the mitogen‐activated protein kinases (MAPKs) protein pathways, and apoptotic markers were used to follow the degeneration process. Our studies provide evidence for the interplay and tight integration between extracellular signal‐regulated kinase (ERK) and p38 MAPKs signaling mechanisms in response to the hHCy and also in association with brain ischemia/IPC challenge. Recognition of the effects of risk factors in the ischemic tolerance would lead to improved therapeutics, especially the brain tissue

    Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal microRNA in Metastatic Castration-Resistant Prostate Cancer

    No full text
    Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH
    corecore