1,532 research outputs found

    Massively parallel implicit equal-weights particle filter for ocean drift trajectory forecasting

    Get PDF
    Forecasting of ocean drift trajectories are important for many applications, including search and rescue operations, oil spill cleanup and iceberg risk mitigation. In an operational setting, forecasts of drift trajectories are produced based on computationally demanding forecasts of three-dimensional ocean currents. Herein, we investigate a complementary approach for shorter time scales by using the recently proposed two-stage implicit equal-weights particle filter applied to a simplified ocean model. To achieve this, we present a new algorithmic design for a data-assimilation system in which all components – including the model, model errors, and particle filter – take advantage of massively parallel compute architectures, such as graphical processing units. Faster computations can enable in-situ and ad-hoc model runs for emergency management, and larger ensembles for better uncertainty quantification. Using a challenging test case with near-realistic chaotic instabilities, we run data-assimilation experiments based on synthetic observations from drifting and moored buoys, and analyze the trajectory forecasts for the drifters. Our results show that even sparse drifter observations are sufficient to significantly improve short-term drift forecasts up to twelve hours. With equidistant moored buoys observing only 0.1% of the state space, the ensemble gives an accurate description of the true state after data assimilation followed by a high-quality probabilistic forecast

    Kernel embedding of maps for Bayesian inference: the variational mapping particle filter

    Get PDF
    Data assimilation for high-dimensional highly nonlinear systems is becoming crucial for several geosciences applications. In this work, a novel particle filter is introduced which aims to an efficient sampling of the posterior pdf in high-dimensional state spaces considering a limited number of particles. Particles are mapped from the proposal to the posterior density using the principles of optimal transport. The Kullback-Leibler divergence between the posterior density and the proposal divergence is minimised using variational principles, leading to an iterative gradient-descent like algorithm. A key ingredient of the mapping is that the transformations are embedded in a reproducing kernel Hilbert space which constrains the dimensions of the space for the optimal transport to the number of particles. Gradient information of the Kullback-Leibler divergence allows a quick convergence using well known gradient-based optimization algorithms from machine learning, adadelta and adam, which do not require cost function calculations. Evaluation of the method and comparison with a SIR filter is conducted as a proof-of-concept in the Lorenz-63 system, where the exact solution is known. No resampling is required even for long recursive implementations. The number of effective particles remains close to the total number of particles in all the recursions. Hence, the mapping particle filter does not suffer from sample impoverishment, even in highly nonlinear settings. Finally, results from experiments on a high-dimensional turbulent geophysical system will be presented, and the performance of the new method compared to other existing method will be discussed.Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones En Biodiversidad y Biotecnología. Grupo de Investigación en Química Analítica y Modelado Molecular; Argentina. University of Reading; Reino UnidoFil: van Leeuwen, Peter Jan. University of Reading; Reino UnidoEGU General AssemblyViennaAustriaEuropean Geosciences Unio
    corecore