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Abstract

New ways of combining observations with numerical models are discussed in

which the size of the state space can be very large, and the model can be

highly nonlinear. Also the observations of the system can be related to the

model variables in highly nonlinear ways, making this data-assimilation (or

inverse) problem highly nonlinear. First we discuss the connection between

data assimilation and inverse problems, including regularization. We explore

the choice of proposal density in a Particle Filter and show how the ’curse

of dimensionality’ might be beaten. In the standard Particle Filter ensem-

bles of model runs are propagated forward in time until observations are

encountered, rendering it a pure Monte-Carlo method. In large-dimensional

systems this is very inefficient and very large numbers of model runs are

needed to solve the data-assimilation problem realistically. In our approach

we steer all model runs towards the observations resulting in a much more

efficient method. By further ’ensuring almost equal weight’ we avoid per-

forming model runs that are useless in the end. Results are shown for the 40

and 1000 dimensional Lorenz 1995 model.
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1. Introduction

This paper does not discuss numerical schemes, but concentrates on a

’higher order’ problem if you like, in which we try to improve the model

simulations of nature by including observations of nature. The emphasis is

on geophysical flows, but the application of the results is not limited to these

flows.

When simulating actual geophysical flows, inaccuracies in initial condi-

tions, forcing fields and in the model equations themselves, both numerical

and physical, tend to lead to differences between the simulation and the ac-

tual behavior of the flow. One way to address this is to try to incorporate

the uncertainties in the simulations, e.g. in the form of probability density

functions (pdf’s). This gives one the possibility to express the uncertainty

in the simulations. A problem is that for large-dimensional simulations in

e.g. numerical weather prediction, the state space is so large, typically 108

variables, that no computer is large enough to store these probability density

functions. So, if we want to include these uncertainties we need an efficient

representation of the pdf’s.

Because the geophysical flows we have in mind are highly nonlinear the

model pdf can have ’any’ shape. To this end, we will represent the pdf by a

number of points or particles in model space. So each particle represents a

full model state.

However, just representing the uncertainties is not enough, we also want

to reduce them. Direct observations of the system at hand is a possibility that

we will explore here. Using Bayes Theorem on information transfer (Jaynes,

2003), we can update the pdf of the model with the pdf of the observations,
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in a procedure called data assimilation. Up to now, the use of Bayes Theorem

has been simplified by assuming linear or linearized methods like the Kalman

Filter and gradient-descent methods like 4DVAR in operational geophysical

problems. In this contribution we will focus on efficient ways to do the fully

nonlinear data assimilation problem in an efficient way.

The Particle Filter will be introduced and its inefficiency in high dimen-

sional systems is high lighted. In a Particle Filter the particles that represent

the model pdf at initial time are integrated forward until the next observa-

tions become available. Then each particle is ’weighted’ with its closeness to

all new observations, and the probability weights of the particles are changed

accordingly. So, if initially all particles had equal probability weight (i.e. the

truth could equally well be represented by each particle), these weights are

now changed with particles close to all new observations obtaining a high

probability weight, and particles not so getting low weight. The use of these

weights becomes apparent when calculating e.g. the mean of all particles.

Initially the mean is just the sum of all particles divided by the total num-

ber of particles. After confrontation with the observations this becomes a

weighted mean. Clearly, particles with very low weight have no statistical

meaning in determining the mean, or for that matter, any moment of the

pdf. So, we can just ignore them.

The reason for the inefficiency of the Particle Filter is related to the fact

that the change for a model run to end up close to a number of observations

is very small in high dimensional systems. Hence only a very small number of

particles gets a high weight, while all others can be ignored. This is referred

to in the literature as the ’curse of dimensionality’ (Snyder et al, 2008).
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Part of the solution comes from exploring the so-called proposal density

(Doucet et. al., 2001; Van Leeuwen, 2009). Bayes Theorem allows one to

steer the model runs towards the observations as long as we properly correct

the relative weights of the particles in the whole ensemble of particles. It

is shown that this is not enough to solve the full problem, and a second

ingredient is to ensure that all particles have almost equal weight in the

posterior ensemble by adding small terms to each particle in the last time

step towards the new observations.

The next section Bayes Theorem is introduced and it is shown how

present-day data-assimilation methods for geophysical flows are derived from

it. It discusses the relation with inverse methods and the different philoso-

phies behind the two approaches. Then the particle filter is introduced and

the curse of dimensionality is discussed. Section 4 introduces the two new in-

gredients for making the Particle Filter more efficient and section 5 discusses

the application to the 40 dimensional Lorenz 1995 model (Lorenz, 1995).

The paper closes with conclusions and a short discussion on what we have

achieved, what not, and where we might go.

2. Bayes Theorem, data-assimilation, inverse methods and regu-

larization

Arguably the most complete way to describe uncertainty is by means of

probability densities (pdf’s), and that is what we will do here. We adopt

the Bayesian viewpoint and explore Bayes Theorem to update the pdf of the

model by observations described by their own pdf. In fact, Bayes Theorem

is just exploring the definition of conditional pdf’s. We have the pdf of the



model, p(ψ), in which ψ is the state vector that contains all model variables,

and we want to obtain the pdf of the model given the new observations d, so

p(ψ|d). This so-called posterior pdf is defined as:

p(ψ|d) =
p(ψ, d)

p(d)
=

p(d|ψ)p(ψ)∫
p(d|ψ)p(ψ)dψ

(1)

It states that the pdf of the model with state vector ψ given the observations

d is found by the multiplication of the pdf of the observations given this model

state, the so-called likelihood, and the pdf of the model before observations

are taken into account. Read in this way, it tells us how to update the model

pdf.

It is important to realize the full data-assimilation solution is the poste-

rior pdf, which can be obtained by a multiplication of the known (in principle

at least) pdf’s. In this sense no inversion is involved, and one can view data-

assimilation as a direct instead of an inverse problem. Data assimilation is

just an update of information in that view. However, one can also hold the

view that the observations are used to change a model pdf that was wrong ini-

tially. Since the observations are functions of the model variables we use their

information to correct the model pdf. This suggests that data-assimilation

is an inverse problem. This is especially apparent when considering the es-

timation of model parameters in a dynamical model, with observations that

relate to the model state, and not to the model parameters. In that case

the model has to be run first before the correct model parameters can be

determined, and then the model has to be run again with the new parameter

values.

Still, this author likes the first interpretation better. There is nothing

wrong with the original model pdf (or model parameter pdf), it just didn’t



include the latest information present in the observations. Data assimilation

tells us that that new information can be included by a ’simple’ multiplication

to find the model pdf with all latest information included. In my view, as

soon as one realizes that the solution to the problem is a full pdf, which is our

objective representation of our information on the system the directness of

the problem becomes apparent, even for the parameter-estimation problem.

Formulated as a Bayesian problem, the objective in parameter estimation is

to obtain a new pdf of the parameters, not a new pdf of the model evolution.

The model evolution pdf can be seen as resulting from having a complex

observation operator working on the parameter pdf.

One of the reasons for the inverse problem terminology is that one is

often only interested in the ’best’ estimate. Best is usually meaning the

maximum of the pdf, the highest mode. The connection with the inverse

problem formulation is easy to see when one looks for the minimum of minus

the logarithm of the posterior pdf:

J(ψ) = −log
(
p(ψ|d)

µ(ψ)

)
(2)

in which µ(ψ) is a ’non-informative prior’, i.e. a very flat pdf. It has to be

included because the posterior pdf is not dimensionless. Usually it is assumed

that this non-informative prior does not change the position of the maximum

of the posterior pdf. When we assume a Gaussian distributed model pdf and

Gausian distributed observations we find:

J(ψ) =
1

2
(ψ − ψ0)

TB−1(ψ − ψ0) +
1

2
(d−H(ψ))TR−1(d−H(ψ)) (3)

which is the familiar L2 norm costfunction or penalty function that is mini-

mized in inverse problems. Here ψ0 is a first guess value for the state vector



(sometimes taken as zero), B is the prior error covariance (sometimes called

regularization matix), R is the error covariance of the observations, and H(ψ)

is the operator that projects the model state vector to the observation space.

If one applies a coordinate transformation ψ = σ0B
1/2φ and defines R̂ =

σdR we recover the standard inverse problem with L2 regularization:

J(ψ) = λ|φ− φ0|2 + (d−H(σ0B
1/2φ))T R̂−1(d−H(σ0B

1/2φ)) (4)

with λ = σ0/σd. In inverse problems with regularization term λ|φ− φ0|2 one

tries to find the value of λ that gives the smallest value for both regularization

and observation terms simultaneously. The term is introduced in the first

place to remedy the ill-posedness of the minimization procedure when only

the observation term is present. The problem is called ill-posed because

it doesn’t have a unique solution. This ill-posedness comes from the fact

that the number of independent observations is generally smaller than the

number of unknowns (otherwise the traditional least-squares solution would

be sufficient). From the inverse-problem point of view this corresponds to a

non-trivial null space, which has to be eliminated by modifying λ

From a more general point of view this ill-posedness does not exist. If

no prior information is present the solution is a hyperplane in the high-

dimensional space in which the state vector lives. That is the best solution

given the information we have. This hyperplane might be difficult to find,

but that is another matter.

From a data-assimilation point of view the regularization term arises from

our prior knowledge of the system, and as such λ is given. It follows from our

knowledge of the system before the new observations are taken into account

providing the relation between the mathematical problem and the physical



(or chemical or ..) problem that one wants to solve. As such, it is not

something that needs optimizing, so λ should be given. It is still possible

that no unique solution exists given all our prior knowledge. That points to

ill-posedness for inverse modelers, but to a hyperplane solution for a Bayesian.

Actually, to a Bayesian the inverse problem can be viewed as a Bayes

problem on a higher level. The search is not for a state vector, but for the pdf

of the prior covariances in the inverse problem described above. The actual

prior information in this high-level Bayesian problem is our prior knowledge

on the pdf of λ, sometimes called the hyperprior. The posterior pdf becomes

the posterior pdf for λ (or, more generally, the posterior pdf for the prior

covariances in the inverse problem described above), and, again, not one

value of λ.

Sometimes one uses an L1 regularization term instead of the L2 norm

described above. From a Bayesian point of view that corresponds to an

exponential or Laplacian prior. Also other forms of regularization are in use,

like penalties on derivatives of the state vector. If one should ask why that

form of the penalty term is used the answer will be that prior knowledge

exists. From a Bayesian point of view that should be put in via a prior pdf.

3. Present-day data-assimilation methods and Bayes Theorem

Two main methods can be distinguished in the present-day methods used

in e.g. numerical weather prediction. These are variational methods, of

which the dominant one is the so-called 4DVAR method, and the (Ensemble)

Kalman Filter. The 4DVAR method is strongly related to our discussion in

the previous section (Talagrant and Courtier, 1987; Courtier, 1997). It tries



to find the maximum of the posterior pdf by minimizing the costfunction (3)

using gradient descent methods. For 4DVAR the data-assimilation problem

boils down to finding the solution of a large set of coupled nonlinear partial

differential equations. Using the calculus of variations the problem is rewrit-

ten as a two-point boundary value problem: the Euler-Lagrange equations.

These are typically linearized first and solved iteratively (the so-called incre-

mental 4DVAR). Due to its efficiency for present-day weather forecasting it

is still the most popular method.

The method has a few problems. Unfortunately, there is no guarantee

that the minimum found is indeed the global minimum. Furthermore, in

concentrating on the mode the rest of the posterior pdf is ignored and it

misses e.g. an error estimate. The error estimate is sometimes calculated as

the inverse of the Hessian, but that is only correct for almost linear problems.

For strongly nonlinear problems the inverse of the Hessian only gives the local

curvature of the posterior pdf, which is not necessarily a good estimate of the

spread of this pdf. For numerical weather prediction typically a few nonlinear

iterations are done, the so-called outer loops, each with a few tens of linear

inner loops. Due to the high costs for the high dimensional models (some 108

model variables), one does not attempt to converge to an actual minimum.

It is actually not entirely clear why 4DVAR works so well for weather

forecasting. But if one looks at the development of the implementation it

becomes clear that the prior error covariances (the so-called background er-

ror covariance matrix, or B matrix) do not represent our knowledge of the

actual errors but is used as a regularization term (M. Cullen, personal com-

munication).



The Kalman filter is developed for linear models. Applications for non-

linear models need extra closure models (e.g. the Extended Kalman Filter)

which are ad hoc. (The problem is indeed similar to that in turbulence

theories.) The Kalman filter equations follow directly from Bayes Theorem

when assuming Gaussian prior and observation pdf’s, and linear measure-

ment operators H(..). In that case the mean and the mode of the posterior

pdf coincide, and we can find the solution directly from setting the gradient

of the costfunction to zero in (3). Another approach is to write the posterior

as one Gaussian pdf in ψ by ’completing the square’. Again another method

is to minimize the trace of the posterior error covariance.

The result is:

ψ̂ = ψ0 +K(d−H(ψ0)) (5)

B̂ = (1−KHT )B

in which K is the Kalman gain given by K = BHT (HBHT + R)−1, and

theˆdenotes the updated value. One often sees the Kalman filter equations

presented in this way but now with H nonlinear, for instance in the LETKF

formulation in numerical weather prediction (see also Jazwinky 1970). The

author of this paper has never seen a proper derivation of those equations.

It looks like an ad hoc extension of the original Kalman Filter equations.

One of the reasons why the Kalman Filter is so popular is that its error

covariances are updated in the process so that we always have an estimate on

the accuracy of the mean. For a linear model it is easy to derive equations for

the propagation of the error covariance in time. However, when the models

are nonlinear and high dimensional the Kalman Filter is not optimal in any

sense. First, no closed form for the propagation of the error covariance in time



can be found, again due to a closure problem, which is now exactly equal to

that of the quasi-normal approximation in turbulence theory. Furthermore,

for a 108 dimensional system the error covariance matrix has 1016 entries.

We might be able to store this matrix in some efficient way, but we cannot

propagate it in time.

Square-root versions of the Kalman Filter have been derived, which at-

tacks the dimensionality problem, but not the nonlinearity problem. A

big step forward has been the development of the Ensemble Kalman Fil-

ter (EnKF) by Evensen (1994, 2006, see also Burgers et al, 1998). It attacks

the nonlinear evolution problem for the error covariance by sampling from

the posterior pdf and propagating the samples, so the model states, forward

in time with the fully nonlinear model equations. At any time the samples

can be used to calculate an approximate mean and error covariance. The suc-

cess of this method in high-dimensional applications using only a very small

number of samples (50-100) is surprising given the limited space spanned

by the ensemble. Crucial to this success is so-called localization, in which

spurious correlations are eliminated by applying a cut-off radius of influence

for each observation. Space limitations do not allow me to discuss this fur-

ther here. Despite its success numerous problems arise in highly nonlinear

systems and systems with inequality constraints, such as concentrations that

have to remain non-negative, while the Gaussian does allow negative values.

This motivated some to look into fully nonlinear data-assimilation meth-

ods. Of these, Particle Filters might have great potential, with some modi-

fications to the standard formulation. The model pdf pm(ψ) of model state



ψ is represented by a set of model states called particles ψi, as:

pm(ψ) =
1

N

N∑
i=1

δ(ψ − ψi) (6)

This representation of the model pdf is propagated forward in time using the

model equations on each particle, as:

ψn = f(ψn−1) + βn (7)

in which n is the time index, f(ψn−1) is the deterministic part of the model,

and βn denotes the stochastic part of the model related to inaccuracies in

the model equations. (This process approximately solves the Kolmogorov

equation for the evolution of the model pdf.) This part is similar to what is

done in the EnKF.

When new observations become available we can just plug the particle

representation in Bayes theorem to obtain the Particle Filter update:

p(ψ|d) =
N∑

i=1

wiδ(ψ − ψi) (8)

in which the weights wi are given by:

wi =
p(d|ψi)∑N

j=1 p(d|ψj)
(9)

It turns out that this approach is not very efficient and that all but one

particle get negligible weight after a few updates with observations. A partial

solution is to use resampling, in which low-weight particles are abandoned

and high-weight particles are duplicated in a systematic way (Metropolis and

Ulam, 1944; Gordon et al, 1993; Doucet et al, 2001, see Van Leeuwen, 2009,

for an overview of particle filtering in geophysical applications, including



approximations to full Particle Filters). A schematic of the method is given

in figure 1. Unfortunately, even for low-dimensional systems large numbers

of particles, so large numbers of model integrations are needed.

4. Efficient Particle Filtering

This section closely follows Van Leeuwen (2010). A very interesting prop-

erty of particle filters that has received little attention in the geophysical

community is related to the so-called proposal density. It will allow us to

slightly change the model equations to ensure that all particles (model runs)

end up close to the observations, ensuring that only a very small fraction of

the model runs has been a waste of computer time.

The posterior expectation value of a function of the state vector f(ψ) can

be written using Bayes Theorem as:

f(ψn) =

∫
f(ψn)p(ψn|dn) dψn =

1

A

∫
f(ψn)p(dn|ψn)p(ψn) dψn (10)

in which A is a normalization factor. The prior density p(ψn) can be obtained

from integration from the previous state p(ψn−1) as

p(ψn) =

∫
p(ψn, ψn−1) dψn−1 =

∫
p(ψn|ψn−1)p(ψn−1) dψn−1 (11)

in which p(ψn|ψn−1) is the so-called transition density that tells us what

the probability is to go from ψn−1 to ψn in one time step. For a purely

deterministic model that pdf is a delta function: when ψn−1 is given it has

to end up in ψn. However, our models contain errors that we represent by

stochastic terms. The transition pdf than becomes equal to the pdf of the
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Figure 1: The standard particle filter. The prior blue pdf is sampled by a number of

particles (10 in this case), indicated by the dark blue vertical bars. These particles are

all propagated forward in time using the full nonlinear equations, indicated by the brown

lines. When observations are present we see the prior particles as blue vertical bars again.

The pdf of the observations is given by the green curve. In this example a large percentage

of particles ends up far from the observations and gets negligible weight. The new weights

are indicated by the red bars. After the resampling step we ensure that we can continue

the model integrations with 10 particles again.



stochastic term βn centered around the deterministic part of the model:

p(ψn|ψn−1) = p(βn) (12)

So we know how to calculate this transition density when the pdf of the

random forcing is given. Let us now use (11) into our expression for the

expected value to find:

f(ψn) =
1

A

∫
f(ψn)p(dn|ψn)p(ψn|ψn−1)p(ψn−1) dψndψn−1 (13)

At the heart of this paper is the freedom in the transition density. We

can rewrite (13) as

f(ψn) =
1

A

∫
f(ψn)p(dn|ψn)

p(ψn|ψn−1)

q(ψn|ψn−1, dn)
q(ψn|ψn−1, dn)p(ψn−1) dψndψn−1

(14)

in which we just multiplied and divided by the so-called proposal transi-

tion density q. To make this a valid expression we have to make sure that

q(ψn|ψn−1dn) is not zero where p(ψn|ψn−1) 6= 0, which does not pose any

practical problems. The important observation is that we can make this pro-

posal density dependent on the future observations dn. A simple way to do

this is to choose:

ψn = f(ψn−1) + β̂n +Kn(dn −H(ψn−1)) (15)

in which Kn is a matrix that can be time dependent, but many other possibil-

ities are open. Note that we have chosen the proposal density q(ψn|ψn−1dn)

as the pdf of β̂n centered on the full deterministic part of the equation above,

so on f(ψn−1) + Kn(dn − H(ψn−1)). Note also that we could use the same

or another stochastic part of the equation, denoted by β̂n in the equation



above. Most important, however, is the new ’nudging’ or relaxation term

Kn(dn − H(ψn−1)). This last term will ’pull’ the particle towards the ob-

servations. By choosing Kn wisely one can assure that all particles end up

relatively close to the observations. As one of the reviewers pointed out,

there is no guarantee when e.g. H is highly nonlinear. Note however that

we have an enormous freedom here, we can choose ’any’ term that forces the

model towards the future observations.

If we now use a particle representation of the pdf at time n − 1 we find

that the integral in (13) is again a weighted sum over the particles, but now

with weights:

wi =
1

A
p(dn|ψn

i )
p(ψn

i |ψn−1
i )

q(ψn
i |ψn−1

i , dn)
(16)

To evaluate these weights we have to make choices for the pdf of the new

stochastic forcing β̂n and the matrix Kn. Suppose that the actual model

error is Gaussian with mean zero and covariance Q, and suppose that we

take the stochastic part of the proposal transition density from a Gausian

with zero mean and error covariance Q̂. Also, assume that the observations

are Gaussian distributed with mean zero and covariance R. The weights can

now be written as:

wi ∝ exp

[
−1

2

(
ψn − f(ψn−1)

)
Q−1

(
ψn − f(ψn−1)

)
(17)

+
1

2
β̂nQ̂−1β̂n − 1

2
(d−H(ψn))R−1(d−H(ψn))

]
where we can recognize the contributions from the different terms in the

expression for the new weights. In geophysics we usually have observations

only every L time steps, where L can easily be 100 or more. In fact, only

when several time steps are performed between observations the nudging-like



term can do its work. In that case the weights become simply:

wi ∝ exp

{
L∑

j=1

[
− 1

2

(
ψj − f(ψj−1)

)
Q−1

(
ψj − f(ψj−1)

)
(18)

+
1

2
β̂jQ̂−1β̂j − 1

2
(d−H(ψn))R−1(d−H(ψn))

}
The way we use this expression is as follows. We integrate the new model

equations (15). This allows us to find ψn
i from ψn−1

i for each particle i. These

state vectors are then used in the expression for the weights above to find

the new weights of the particles when we arrive at the observations. This

is followed by a resampling step, and the same process is repeated. Figure

2 shows how this particle filter with as proposal density a ’nudging’ term

works. The particles are ’drawn towards the observations’, and all particles

have a comparable weight (red bars). The improved efficiency compared

to the standard particle filter depicted in Fig. (1) is clearly visible. The

main difference with figure 1 is that the particles end up much closer to the

observations in stage 2, so that the statistical representation of the posterior

pdf is much better than before due to the fact that none of the particles is

ignored.

The idea presented above is a major advantage in particle filtering for

geoscience applications. The reason why it has not been explored in the

particle filter community in statistics before is that the models used in the

geosciences usually need a substantial number of model steps to propagate

the model forward to the next observation set. Only in such a situation

can the ’nudging term’ be effective. Instead of running the model randomly

forward in time, we force it towards the observations. The error that we

make is completely compensated for by adjusting the relative weights of the
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Figure 2: The new particle filter. Same as figure 1, but now the particles are drawn

towards the observation using the proposal density. Note that much more particles end up

close to the observations in stage 2, resulting in a much better resolved posterior density

in stage 3 and 4. Also note the different weights of the particles in stage 2 and 3 due to

the proposal density.



particles. We note that there is an enormous freedom in choosing the proposal

density, i.e. the ’nudging’ part, which can be explored fully in the future to

find more efficient schemes.

When a large number of observations is present the weights still tend to

differ considerably, and filter divergence is still possible. Hence the problem

is that the weights of the particles vary too much. We propose here to

attack that problem directly. We can make all weights almost equal in the

last step towards the observations by changing the proposal density in this

last step. A way to do this is as follows. Assuming Gaussian errors in the

model equations for the target transition densities p(ψn
i |ψn−1

i ) and ignoring

the proposal contribution for the moment, the weights can be written as:

wi ∝ wrest
i exp

[
−1

2

(
ψn − f(ψn−1)

)
Q−1

(
ψn − f(ψn−1)

)
(19)

− 1

2
(d−H(ψn))R−1(d−H(ψn))

]
in which wrest

i denotes the weights due to all time steps up to the last. We

can now force the last time step of the model such that the weights are equal.

The weights are the same for each particle i when − logwi are constant, equal

to C let’s say, so

− logwrest
i +

1

2

(
ψn − f(ψn−1)

)
Q−1

(
ψn − f(ψn−1)

)
(20)

+
1

2
(d−H(ψn))R−1(d−H(ψn)) = Ci = C

If the observation operator H is linear this is a quadratic equation for

the new model states ψn
i with, in a space with dimension larger than one,

an infinite number of solutions. To proceed we first calculate the minimum



theoretical value of Ci for each member i, as:

Ci = − logwrest
i +

1

2
(d−H(f(ψn−1)))(HQHT +R)−1(d−H(f(ψn−1))) (21)

That this form comes up is easy to see when one realizes that the second term

is just the value of the costfunction at the minimum (see e.g. Bennett, 1992).

This is the lowest value for Ci for each member. To make all Ci’s equal they

have to be equal to the largest Ci, so C = maxi(Ci). However, we don’t want

all weights equal to that of the worst performing particle. (Note that even

if the Ci’s are similar, the weights are proportional to the exponent of them,

and can still vary significantly.) In the application described below we have

chosen C such that 80% of the particles can achieve that weight. The last

20% of the particles is too far from the observations to take into account.

These numbers are a compromise between being close to all observations and

keeping enough particles in the ensemble. With this choice, we typically keep

80% of the particles in the ensemble, while 20% will have very low weight,

and will re-enter only through resampling later on. It is good to realize that

other choices might lead to better overall performance of the filter. We leave

that for future research. Still, we are left with a quadratic equation (if H is

linear) in the state at time n for each particle, again with an infinite number

of solutions. One can imagine several ways to choose one of these solutions.

In this paper we simply assume

ψn
i = f(ψn−1

i ) + αiK(d−H(f(ψn−1
i )) (22)

in which K = QHT (HQHT + R)−1 and αi is a scalar. So we reduce the

problem to a quadratic equation in a scalar, which is easily solved as

α = 1−
√

1− bi/ai (23)



in which ai = 0.5xT
i R

−1HKx and bi = 0.5xT
i R

−1xi − C − logwrest
i . Here

x = d−H(f(ψn−1
i ).

As mentioned before, from Eq (16) we observe that taking the proposal

deterministically would lead to division by zero since the proposal would just

be a delta function centered around the deterministic value. To avoid that

we introduce an extra random step from a pdf with small amplitude to make

only small changes to the particles. In our example with the Lorentz-95

model we used a Gaussian distribution with a width of γσ, in which σ is the

standard deviation of the model error and γ is a small dimensionless number.

We calculate the new weights using the new ψn
i as before, and divide by the

new Gaussian proposal density .

exp

[
−1

2

(
ψn

i − ψ̂n
i )
)
Q̂−1

(
ψn

i − ψ̂n
i )
)]

(24)

in which Q̂ = γ2Q, with γ small, e.g. 10−5, and ψ̂n
i is the particle after the

equal weight scheme. A final step now is a resampling to ensure that all

particles have equal weight again.

Finally, it is stressed that by construction the particles are independent,

and as such the particles form a random sample from the posterior pdf.

5. Application to the Lorenz-95 model

A challenging example for a particle filter is the 40-variable Lorenz 1995

model (Lorenz, 1995), which for the settings given below typically needs tens

of thousands of particles (Nakano et al, 2007). The model equations are given

by:
dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F (25)
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Figure 3: The new particle filter with almost equal weights for the Lorenz95 model. The

chaotic 40 dimensional Lorenz-95 model in which every other model variable is observed

every 10 time steps. The black line is the true solution, the red crosses observations of

this truth, and the green lines depict the evolution of the particles in time. Note that the

particles follow the truth remarkably well, using only 20 particles.
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Figure 4: Similar to figure 3, but now for an unobserved variable.

using dt = 0.01, and F = 8, with 40 grid points. The size of F ensures

the model operates in the chaotic regime. The model was initialized by

choosing F = 8.01 at grid point 20, and running the model for 2000 time

steps. The end point of that run was used as the initial condition for the

data assimilation experiment. In the application of the new particle filter

we chose K = 1 in the nudging term (except for the last time step before

the new observations, where the ’almost equal weight’ scheme was used, as

explained above), multiplied by a linear function that is zero half way the

two updates and growing to one at the new observation time. The random

forcing was multiplied by one minus that function. This allows the ensemble

to spread out due to the random forcing initially, and pulling harder and

harder towards the new observation the closer to the new update time. It is

stressed again that an enormous freedom exists in choosing the form of this



nudging term, or, more generally, the proposal density. Whatever we do is

always compensated for by using the correct corresponding relative weights

from (16).

The truth was generated by solving the stochastic model with the above

parameters, with observations every other grid point, every 10 time steps.

The observation error was σobs = 1, the initial condition standard devia-

tion was σinitial = 2, and the model error standard deviation was chosen as

σmodel = 0.5.

Figure 3 shows what the new particle filter generates: a swarm of particles

that follows the observations smoothly in time. The red crosses denote the

observations, with the red bars indicating their standard errors. Figure 4

shows a similar plot but now for an unobserved variable. Also here the

swarm of particles closely follows the truth.

The problem discussed above is already a nonlinear one. To test the

method in an even more nonlinear setting we performed the same experiment

using 50 time steps between observations. To the knowledge of this author,

this experiment has not been described before. Figure 5 shows the results

with again only 20 particles. The results show that also in this case the new

particle filter works satisfactorily.

Finally, an experiment is performed to test the scalability of the method.

To this end a 1000-dimensional Lorenz-95 model was constructed, and the

system is again observed every other grid point, so 500 observations, every

10 time steps of the model. This is a very hard problem, but, as can be seen

from figure 6, the particles are able to rack the truth remarkably well. To

obtain this result we increased the nudging strength by a factor 2, but kept
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Figure 5: Similar to figure 3, but now for observations every 50 time steps. Even in this

case the nudging is working quite effectively.
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Figure 6: Similar to figure 3, but now for the 1000-dimensional Lorenz-95 model. The

model is capable of following the truth quite well, using only 20 particles.



all other system variables the same as in the first Lorenz-95 experiment. It

is possible that smoother solutions might be possible with other choices for

the proposal density; that was not investigated any further here.

6. Conclusions and discussion

We have discussed the relation betwen inverse problems and data assim-

ilation and shown how they are connected. The two main present-day data-

assimilation methods for geophysical flows have been discussed and their lin-

earity assumptions have been high-lighted. A new data-assimilation method

is introduced that is fully nonlinear and potentially has enormous impact on

large-dimensional applications. We presented an application to the complex

40-dimensional Lorenz 1995 model, were we show that the method needs of

the order of 20 particles, showing that the method is very efficient indeed.

One might argue that the 10 time steps between different observation sets

were not enough for the model to develop full non linearity. Figure 5 shows

that the method also produces good results with 50 time steps between obser-

vation sets. So the simple nudging proposed here does not hinder application

of the method to highly non linear applications. And indeed, when the nudg-

ing is not appropriate other more complicated schemes can be envisaged, for

instance a complete 4DVar on each particle (although that would be quite

expensive).

An application to the 1000 dimensional Lorenz 95 model with 20 particles

stresses the perfect scaling of the new method.

The freedom in proposal density to ensure almost equal weights for the

particles allows for the development of more efficient schemes than the nudg-



ing scheme presented here.

One may question what the usefulness is of representing a pdf in a say

108 dimensional space with only a few tens or perhaps hundreds of particles.

Experience with Ensemble Kalman filters on this kind of systems shows that

useful information is present in these ensembles. The main difference is that

we want to include non-Gaussian features too, and the potential to do that

is still an open question.

References

Bennett, A. Inverse Methods in Physical Oceanography, (Cambridge Univer-

sity Press, Cambridge, 1992).

Burgers, G., Van Leeuwen, P.J., and Evensen, G. Analysis Scheme in the

Ensemble Kalman Filter, Monthly Weather Rev., 126, 1719-1724.(1998).

Courtier, P., Dual formulation of four-dimensional variational assimilation,

Q.J.Royal Met. Soc., 123(B), 2449-2461, (1997).

Doucet, A., De Freitas,N., and Gordon, N., Sequential Monte-Carlo methods

in practice, (Springer, Berlin, 2001).

Evensen G., Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte-Carlo methods to forecast error statistics, J. Geophys.

Res., 99, 10143-10162 (1994).

Evensen G. Data assimilation: The Ensemble Kalman Filter, (Springer,

Berlin, 2006).

Jaynes, E.T.. Probability Theory The logic of Science, (Cambridge Univer-

sity Press, Cambridge, 2003).

Gordon, N.J., Salmond, D.J., and Smith, A.F.M., Novel approach to nonlinear/non-



Gaussian Bayesian state estimation, IEE Proceedings-F, 140, 107-113 (1993).

Lorenz, E.N., Predictability: A problem partly solved, Proc. Sem. Pre-

dictability, Vol 1 ECMWF, Reading, UK, 1-18, (1995)

Metropolis, N., and Ulam, S., The Monte Carlo Method, J. Amer. Stat.

Assoc., 44, 335-341 (1944).

Nakano, S., Ueno, G., and Higuchi, T. Merging particle filter for sequential

data assimilation, Nonlin. processes Geophys., 14, 395-408 (2007).

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. Obstacles to high-

dimensional particle filtering, Mon. Wea. Rev., 136, 4629-4640 (2008).

Talagrand, O. and P. Courtier, P., Variational assimilation of meteorological

observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy.

Meteor. Soc., 113, 1311-1328 (1987).

Van Leeuwen, P.J. Particle Filtering in Geosciences, Monthly Weather Rev.,

137, 4089-4114, (2009).

Van Leeuwen, P.J. , Nonlinear Data Assimilation in geosciences: an ex-

tremely efficient particle filter, Quart. J. Roy. Meteor. Soc.., In Press , 2010.

Appendix A. Appendix: Derivation of equation (23)

In this appendix we derive equation (23). If we plug expression (22) in

(20) we find:

− logwrest
i +

1

2
α2xTKTQ−1Kx (A.1)

+
1

2
(x− αHKx)TR−1(x− αHKx) = C



in which x = d−H(f(ψn−1
i )). Separating equal powers of α gives:

α2

[
1

2
xTKTQ−1Kx+ xTKTHTR−1HKx

]
+ (A.2)

α

[
−1

2
xTR−1HKx+ xtKTHTR−1x

]
+

1

2
xTR−1x− C − logwrest

i = 0

Using the expression for K = QHT (HQHT + R)−1 in the factor for α2 we

find

1

2
xT (HQHT +R)−1HQQ−1Kx+ xT (HQHT +R)−1HTQHTR−1HKx

=
1

2
xT
[
(HQHT +R)−1HK + (HQHT +R)−1HQHTR−1HK

]
x

=
1

2
xT
[
(HQHT +R)−1RR−1HK + (HQHT +R)−1HQHTR−1HK

]
x

=
1

2
xT
[
(HQHT +R)−1(R +HQHT )R−1HK

]
x

=
1

2
xTR−1HKx (A.3)

Similarly, the factor corresponding to α becomes:

−1

2
xTR−1HKx+ xtKTHTR−1x (A.4)

= −1

2
xT
[
R−1HK +KTHTR−1

]
x

= −1

2
xT
[
R−1HK + (HQHT +R)−1HQHTR−1

]
x

= −1

2
xT
[
R−1HK + (HQHT +R)−1(HQHT +R−R)R−1

]
x

= −1

2
xT
[
R−1HK +R−1 − (HQHT +R)−1

]
x

= −1

2
xT
[
R−1HK +R−1(HQHT +R)(HQHT +R)−1 − (HQHT +R)−1

]
x

= −1

2
xT
[
R−1HK + (R−1(HQHT + 1)(HQHT +R)−1 − (HQHT +R)−1

]
x

= −xTR−1HKx



So we find:

1

2
xTR−1HKxα2 − xTR−1HKxα +

1

2
xTR−1x− C − logwrest

i = 0 (A.5)

with solution equation(23).


