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(Manuscript received 6 November 2012; in final form 1 May 2013)

ABSTRACT

Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for

geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact

observations have within the assimilation process. The effect of non-Gaussian observation error (described by

the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The

observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual

information, and the relative entropy. These three measures have all been studied in the case of Gaussian data

assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be

derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an

interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the

two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for

a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and

relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded

that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of

observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but

also on the metric used to measure the observation impact and the source of the non-Gaussian structure.

Keywords: mutual information, relative entropy, sensitivity

1. Introduction

In assimilating observations with a model, the assumptions

made about the distribution of the observation errors are

very important. This can be seen objectively by measuring

the impact the observations have on updating the estimate

of the true state, as given by the data assimilation scheme.

Many data assimilation (DA) schemes are derivable from

Bayes’ theorem, which gives the updated estimate of the

true state in terms of a probability distribution, p(xNy).

pðxjyÞ ¼ pðxÞpðyjxÞ
pðyÞ

(1)

In the literature, the probability distributions p(yNx),
p(x) and p(xNy) are known as the likelihood, prior and

posterior, respectively. p(yNx) and p(x) must be known or

approximated in order to calculate the posterior distri-

bution, while p(y) is generally treated as a normalisation

factor as it is independent of x. The mode of the posterior

distribution is then the most likely state given all available

information and the mean is the minimum variance esti-

mate of the state.

This paper aims to give insight into how the structure of

the given distributions, p(x) and p(yNx), affect the impact

the observations have on the posterior, p(xNy). It is known
from previous studies that non-Gaussian statistics change

the way observations are used in data assimilation (e.g.

Bocquet, 2008). This paper presents analytical results to

explain this change in observation impact. We begin by

presenting the case of Gaussian statistics.

1.1. Gaussian statistics

An often useful approximation for p(yNx) and p(x) is that

they are Gaussian distributions, this allows the distribu-

tions to be fully characterised by a mean and covariance.

The mean of p(yNx) is the value of the observations, y,

measuring the true state and the mean of p(x) is our prior

estimate of the true state, xb. The covariances represent the

errors in these two estimates of the truth and are given by
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R and B for the observations and prior estimate, respec-

tively. In the case when the observations and state are

represented in different spaces, it is necessary to transform

the likelihood into state space in order to apply Bayes’

theorem. However, if the transform is linear the likelihood

continues to be Gaussian in the observed subspace of the

state.

In assuming the likelihood and prior (and subsequently

posterior) are Gaussian the DA problem is greatly simpli-

fied. As such, these assumptions have been used in the

development of operational DA schemes for use in numeri-

cal weather prediction (NWP). For example, the Gaussian

assumption has been used in the development of variational

techniques such as 4D-Var used at the Met Office and

ECMWF (Rabier et al., 2000; Rawlins et al., 2007), and

Kalman Filter techniques such as the ensemble Kalman

filter used at Environment Canada (Houtekamer and

Mitchell, 1998). In these operational settings, a measure of

the impact of observations has been used for

� Improved efficiency of the assimilation by removing

observations with a comparatively small impact,

e.g. Peckham (1974); Rabier et al. (2002); Rodgers

(1996).

� Highlighting erroneous observations or assumed

statistics, e.g. Desroziers et al. (2009).

� Improving the accuracy of the analysis by adding

observations which should theoretically have a high

impact. For example, by defining targeted obser-

vations (Palmer et al., 1998) or the design of new

observing systems (e.g. Wahba, 1985; Eyre, 1990).

In this work we will concentrate on three measures of

observation impact: the sensitivity of the analysis (to be

defined) to the observations; mutual information; and

relative entropy. Below, these three measures are briefly

introduced and interpreted for Gaussian error statistics.

For a more in depth study of these measures see relevant

chapters within the following books: Cover and Thomas

(1991); Rodgers (2000); and Bishop (2006).

1.1.1. The sensitivity of the analysis to the observations.

In Gaussian data assimilation the mode and mean of the

posterior distribution are the same and unambiguously

define the analysis. In this case the analysis, xa, is a linear

function of the observations and prior estimate:

xa ¼ xb þ Kðy �HxbÞ; (2)

where K is known as the Kalman gain and is a function of

B, R and H. H is the observation operator, a (linear) map

from state to observation space (See Kalnay, 2003 for an

introduction to Gaussian data assimilation.)

The sensitivity of the analysis to the observations has

an obvious interpretation in terms of observation impact

(Cardinali et al., 2004). It is defined as:

S ¼ @Hxa

@y
: (3)

This is a m�m matrix where m is the size of the

observation space.

From eq. (2) we can see that SG (superscript G refers to

the Gaussian assumption) is simply

SG ¼ HK: (4)

The Kalman gain can be written in many different forms

including K ¼ PG
a HTR�1 where PG

a is the analysis error

covariance matrix given by

PG
a ¼ ðHTR�1Hþ B�1Þ�1

: (5)

Therefore, the sensitivity is inversely proportional to R

and proportional to PG
a . Hence it can be concluded from

eqs. (4) and (5), that the analysis has greatest sensitivity to

independent observations with the smallest error variance

which provide information about the region of state space

with the largest prior error.

The diagonal elements of S give the self-sensitivities and

the off-diagonal elements give the cross-sensitivities. The

trace of SG can be shown to give the degrees of freedom for

signal, ds, that is ds ¼
P

i

ki, where ki is the i
th eigenvalue of

HK (Rodgers, 2000).

The analysis sensitivity has proven to be a useful diag-

nostic of the data assimilation system (Cardinali et al., 2004).

It is possible to approximate eq. (4) during each analy-

sis cycle giving a valuable tool for assessing the changing

influence of observations and monitoring the validity of the

error statistics.

1.1.2. Mutual information. Mutual information is the

change in entropy (uncertainty) when the observations are

assimilated (Cover and Thomas, 1991). It is given in terms

of the prior, p(x), and posterior, p(xNy), distributions:

MI ¼
Z

pðxÞ ln pðxÞdx�
Z

pðyÞ
Z

pðxjyÞ ln pðxjyÞdxdy:

(6)

For Gaussian statistics it is unsurprisingly a function of the

analysis and background error covariance matrices, PG
a and

B. In this case it is given by

MIG ¼ 1

2
ln jBðPG

a Þ
�1j (7)

(Rodgers, 2000), where N*N represents the determinant. As

with degrees of freedom for signal, mutual information can

be written in terms of the eigenvalues of the sensitivity
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matrix: MI ¼ � 1
2

P
i

ln j1� kij. Therefore, the observa-

tions which have the greatest contribution to mutual

information should also be the observations which the

analysis is most sensitive to.

Mutual information has been used in many studies of

new observing systems. Eyre (1990) demonstrated its bene-

fits over measuring the change in error variances alone as

this measure incorporates information about the change in

the covariances too [see eq. (7)].

1.1.3. Relative entropy. Relative entropy measures the

relative uncertainty of the posterior compared to the prior

(Cover and Thomas, 1991).

RE ¼
Z

pðxjyÞ ln pðxjyÞ
pðxÞ

dx: (8)

For Gaussian statistics it is given by

REG ¼ 1

2
ðxa � xbÞ

TB�1ðxa � xbÞ þMI � 1

2
ds (9)

(see Bishop, 2006). This is the only measure that depends on

the value of the analysis, xa, and so is sensitive not only to

how the covariance of the analysis error is affected by the

observations but also how the observations affect the actual

value of the analysis. Therefore the observations which

result in the greatest relative entropy do not necessarily give

the largest mutual information or analysis sensitivity if the

signal term in eq. (9), 1
2
ðxa � xbÞ

TB�1ðxa � xbÞ, is dominant.

However, in a study of the measures, ds, MI and RE by

Xu et al. (2009), it was found that for defining an optimal

radar scan configuration the result had little dependence on

which of these measures were used.

Relative entropy has received little attention in opera-

tional DA due to its dependence on the observation values.

However, the shift in the posterior away from the prior, not

just the reduction in uncertainty, is clearly an important

aspect of observation impact. For this reason, this measure

has been included in our current study.

1.2. Non-Gaussian statistics

Although Gaussian data assimilation has proven to be a

powerful tool, in some cases a Gaussian distribution gives a

poor description of the error distributions. For example,

it is found that describing the observation minus back-

ground differences (known as innovations) as a Gaussian

distribution often underestimates the probability of extreme

innovations (the tails are not fat enough) and so the

associated observations are assumed to be unlikely rather

than providing valuable information about extreme

events, and so removed in quality control. Following on

from Ingleby and Lorenc (1993), non-Gaussian likelihoods

such as the Huber function (Huber, 1973), are being used

in operational quality control to make better use of the

available observations. Another study of innovation statis-

tics performed by Pires et al. (2010) found significant

deviations fromGaussian distributions in the case of quality

controlled observations of brightness temperature from

the High Resolution Infrared Sounder (HIRS). Pires et al.

(2010) concluded that incorrectly assuming Gaussian sta-

tistics can have a large impact on the resulting estimate of

the state. In this case, the magnitude of the effect on the

estimate of the state was seen to depend upon the size of the

innovation and the non-Gaussian structure in the likelihood

relative to that in the prior.

From eq. (1), we see that there are no restrictions on

our choice of p(yNx) or p(x) when calculating the posterior

and the more accurately these distributions are defined the

more accurate our posterior’s representation of our knowl-

edge of the state will be. This simple fact has led to a recent

surge in research into non-Gaussian DA methods which are

applicable to the geosciences, see van Leeuwen (2009) and

Bocquet et al. (2010) for a review of a range of possible

techniques.

This work follows on from Fowler and van Leeuwen

(2012), in which the effect of a non-Gaussian prior on the

impact of observations was studied when the likelihood

was restricted to a Gaussian distribution. The main con-

clusions from that paper are summarised below.

In Fowler and van Leeuwen (2012) a Gaussian mixture

was used to describe the prior distribution to allow for a

wide range of non-Gaussian distributions. It was shown

that, in the scalar case, the sensitivity of the analysis to

observations was still given by the analysis error variance

divided by the observation error variance as in the Gaussian

case [see eq. (4)]. However, the sensitivity could become a

strong function of the observation value because the

analysis error variance is no longer independent of the

observation value. Therefore, when the prior and observa-

tion error distributions are fixed but the position of the

likelihood, given by the observation value, is allowed to

change, the analysis is most sensitive to observations which

also result in the largest analysis error variance. This is not a

desirable property for a measure of observation impact.

Fowler and van Leeuwen (2012) concluded that comparing

the analysis sensitivity to the sensitivity when a Gaussian

prior was assumed eq. (4), showed that the Gaussian assum-

ption could lead to both a large overestimation and a large

underestimation depending on the value of the observation

relative to the background and the structure of the prior.

The error in the Gaussian approximation to relative

entropy was also seen to give a large range of errors as a

function of the observation value relative to the back-

ground.However, for a particular realisation of the observa-

tion value, the errors in the Gaussian approximation to
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relative entropy and the Gaussian approximation to the

sensitivity did not necessarily agree in sign or magnitude.

This highlighted the fact that care is needed when making

conclusions about the influence of a non-Gaussian prior on

the observation impact.

Mutual information is independent of the realisation of

the observation error [as seen in eq. (6)] and so as a measure

of the influence of a non-Gaussian prior it provides a more

consistent result. Mutual information was also seen in

Fowler and van Leeuwen (2012) to be affected a relatively

small amount by a non-Gaussian prior.

To summarise: allowing for non-Gaussian prior statistics

has a significant effect on the observation impact. The

choice of metric is more important than in the Gaussian

case as the consistency between the different measures

breaks down.

Within this current paper we shall compare these pre-

vious findings to the case when it is the likelihood that is

non-Gaussian. A non-Gaussian prior or likelihood may

result from the properties of the state variable. For

example, if the variable has physical bounds then we

know, a priori, that the probability of the variable being

outside of these bounds is zero which is inconsistent with

the infinite support of the Gaussian distribution. This is a

particular issue when the variable is close to these bounds.

The non-Gaussian prior may also result from a non-linear

forecast providing our prior estimate of the state. In this

case a wide variety of non-Gaussian distributions are possi-

ble and techniques such as the particle filter (van Leeuwen,

2009) allow for the non-linear model to implicitly give the

prior distribution. A non-Gaussian likelihood may similarly

result from a non-linear map between the observation and

state space. However, within this paper we shall only give

consideration to linear observation operators. Non-linear

observation operators greatly complicate the problem,

as not only do they create non-Gaussian likelihoods out

of Gaussian observation errors, the structure of the non-

Gaussian PDF depends on the value of the observation.

The observation error in this case is defined as:

E ¼ y �Hxtruth

Possible contributing factors to E include:

� Random error associated with the measurement.

� Random errors in the observation operator, for

example due to missing processes or linearisation.

This is often distinguished from representivity error

which deals with the additional error source due to

the observations sampling scales which the model is

unable to resolve (Janjić and Cohn, 2006).

� Systematic errors are also possible, which may have

synoptic, seasonal or diurnal signals some of which

can be corrected. There are also gross errors which

need to be identified and rejected by quality control

(e.g. Gandin et al., 1993; Qin et al., 2010; Dunn

et al., 2012).

These sources of random error could all potentially lead to

a non-Gaussian structure in the observation errors. Errors

associated with the observation operator will in general be

state dependent (Janjić and Cohn, 2006). For this reason,

within this paper, we will focus on the case of perfect linear

observation operators so that the non-Gaussian structure

is a characteristic of the instrument error or pre-processing

of the observations before they are assimilated. It is

assumed that this error source is independent of the state.

In analysing the impact of the non-Gaussian likelihood

(rather than a non-Gaussian prior) we shall follow a similar

methodology to that in Fowler and van Leeuwen (2012).

We shall first derive some general results for the sensitivity

of the analysis to the observations. We will then look at

a scalar example when the likelihood is described by a

Gaussian mixture with two components each with identical

variances, GM2. This will allow for direct comparison to

the results in Fowler and van Leeuwen (2012). Finally

we will look at the case when the measurement error is

described by a Huber function which cannot be described

well by the GM2 distribution.

2. The effect of non-Gaussian statistics on the

analysis sensitivity

In non-Gaussian data assimilation the analysis must be

explicitly defined. In this work we define the analysis as

the posterior mean giving the minimum variance estimate

of the state rather than the mode which can be ill-defined

when the posterior is multi-modal. In extreme bimodal

cases this does lead to the possibility of the analysis having

low probability.

The sensitivity of the analysis to the observations can be

calculated analytically when either the prior or likelihood

is Gaussian, see appendix A. It can be shown that in the

case of an arbitrary likelihood and Gaussian prior that the

sensitivity is given by

SnGpðyjxÞ ¼ @Hla

@y
¼ Im �HPaB

�1HTðHHTÞ�1
(10)

where ma is the analysis (mean of the posterior). When the

likelihood is Gaussian, Pa ¼ PG
a ¼ ðB�1 þHTR�1HÞ�1

and

the expression given in eq. (10) is equal to HK [see Section

1.1.1, eq. (4)]. However, a non-Gaussian likelihood means

that Pa becomes a function of the observation value and

hence the sensitivity is also a function of the observation

value.

From eq. (10) it is seen that SnGpðyjxÞ increases as Pa

decreases and so for a fixed prior and likelihood structure,
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the realisation of y for which the analysis has maximum

sensitivity also gives the smallest analysis error covariance.

In other words, the analysis is most sensitive to observa-

tions which improve its accuracy.

This is in contrast to when the prior is non-Gaussian and

the likelihood is Gaussian. In this case the sensitivity is

given by (see Appendix A)

SnGpðxÞ ¼ @Hla

@y
¼ HPaH

TR�1: (11)

This has the same form as eq. (4) in Section 1.1.1. In this

case, it is seen that SnGpðxÞ is proportional to the analysis

error covariance. Therefore for a fixed prior and likelihood

structure, the analysis is most sensitive to observations

which reduce its accuracy.

The analysis error covariance is an important aspect in

DA in which it is desirable to find a minimum value.

Therefore, from eqs. (10) and (11), we can conclude that

the influence of a non-Gaussian likelihood on the analysis

sensitivity is of a fundamentally different nature to the

influence of a non-Gaussian prior. This is demonstrated for

a simple scalar example in the next section.

3. A simple example

For comparison to the results in Fowler and van Leeuwen

(2012) in which the effect of a skewed and bimodal prior on

the observation impact was studied we shall look at the

scalar case when the likelihood can be described by a

Gaussian mixture with two components each with identical

variance, GM2.

pðyjxÞ ¼ðð2pÞr2Þ�
1
2 w exp �ðyþ n1 � xÞ2

2r2

( ) 

þ ð1� wÞ exp �ðyþ n2 � xÞ2

2r2

( )�
:

(12)

In this example it is assumed that we have direct observa-

tions of the state, x, and so the observation operator, H,

is simply the identity. From eq. (12) we see that as a

function of x, the means of the Gaussian components are

l1 ¼ yþ n1 and l2 ¼ yþ n2. To ensure that eq. (12) is non-

biased, i.e.
R
ðy� xÞpðyjxÞdx ¼ 0, we have the constraint

wn1 þ ð1� wÞn2 ¼ 0, effectively making our observation,

y, the mean of the likelihood. This could be restrictive,

particularly in the case of a strongly bimodal likelihood

when the observation would have a low probability. How-

ever, as long as the observation value is chosen to be the

likelihood mean plus a constant, the analysis sensitivity

presented below remains unchanged.

The likelihood in eq. (12) is described by four para-

meters: the relative weight of the Gaussian components, w,

the means of the Gaussian components, m1 and m2, and

the variance of the Gaussian components, s2. These four

parameters give rise to a large variety of non-Gaussian

distributions, this can be seen from expressions for the

skewness and kurtosis.

The variance of the likelihood, p(yNx) as a function

of x, is:

r2
y ¼ r2 þ wð1� wÞðl1 � l2Þ

2
:

Using this expression for the variance we can give the

following expression for the skewness of p(yNx):

w3
y ¼

R
ðx� lyÞ

3
pðyjxÞdx

r3
y

¼ wð1� wÞð1� 2wÞðl1 � l2Þ
3

r3
y

:

And the kurtosis of p(yNx):

j4
y ¼

R
ðx� lyÞ

4
pðyjxÞdx

r4
y

� 3

¼ ðl1 � l2Þ
4
wð1� wÞð1� 6wþ 6w2Þ

r4
y

The values of skewness and kurtosis are plotted in Fig. 1 as

a function of w and m2�m1 when s2�1. It is clear that for a

fixed value of m2�m1, the skewness increases as Nw�0.5N
increases until it reaches a maximum (indicated by the

dotted line in Fig. 1), then the skewness sharply returns to

zero as Nw�0.5N approaches 0.5 and GM2 returns to a

Gaussian distribution. When the weights are equal (w�0.5)

only negative values of kurtosis are possible, increasing as

m2�m1 increases. This results in a likelihood with a flatter

peak than the Gaussian distribution becoming bimodal as

w(1�w)(m1�m2)
2 exceeds s2. Positive values of kurtosis are

possible when the distribution is also highly skewed. Note

that a Gaussian distribution has zero kurtosis.

Non-Gaussian structure such as skewness could result

from bounds on the observed variable or as a result of non-

linear pre-processing. In such a case it should be possible

to construct a model of the errors associated with the

measurement, such as the GM2 distribution introduced in

this section, through comparison to other observations and

prior information for which we have a good estimate of

the errors. It is difficult to think of a situation when the

likelihood may be strongly bimodal without accounting for

a non-linear observation operator. For example, an ambi-

guity in the observation could result in a bimodal error

such as in the use of a scatterometer to measure wind

direction from waves (Martin, 2004). Modelling y�NxN
results in a likelihood with a GM2 distribution with equal

weights, if the error on the observation, y, is Gaussian.

In this case the means of the two Gaussian components

would be m1�y and m2��y. However, the general results

provided in Section 2 do not hold. As such in the following
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analysis the emphasis is not on the extreme bimodal case

but the smaller deviations from a Gaussian distribution

that the GM2 distribution allows.

Whentheprior isgivenbyaGaussian pðxÞ ¼ NðlG
x ; kr2Þð Þ,

the posterior will also be given by a GM2 distribution

[refer to Bayes’ theorem, eq. (1)] with updated parameters.

These updated parameters are given by

~w ¼ we�a1

we�a1 þ ð1� wÞe�a2

; (13)

where ai ¼ ððli � lG
x Þ

2Þ=ð2ð1þ kÞr2Þ.

~li ¼
kli þ lG

x

1þ k
;

for i�1,2.

~r2 ¼ kr2

1þ k
:

Note that these have the same form as in Fowler and van

Leeuwen (2012) due to the symmetry of Bayes’ theorem.

Given this expression for the posterior distribution we

can calculate its mean as: la ¼ ~w el1 þ ð1� ~wÞ el2. The sen-

sitivity of the posterior mean to the observations can then

be expressed in terms of the parameters of the likelihood

distribution as:

SGM2pðyjxÞ¼ @la

@y
¼ k

k þ 1
� kwð1� wÞðl1 � l2Þ

2
e�a1�a2

ð1þ kÞ2r2ðwe�a1 þ ð1� wÞe�a2Þ2
:

(14)

This expression has a striking resemblance to the sensitivity

in the case of the non-Gaussian prior, SGM2pðxÞ. In eq. (13)

of Fowler and van Leeuwen (2012), when the prior has the

same form as the likelihood described in eq. (12), SGM2pðxÞ

was shown to be

SGM2pðxÞ ¼ 1

jþ 1
þ jwð1� wÞðl1 � l2Þ

2
e�a1�a2

ð1þ jÞ2r2ðwe�a1 þ ð1� wÞe�a2Þ2
: (15)

In this case pðyjxÞ ¼ Nðy; jr2Þ and ai �((y � mi)
2)/

ð2ð1þ jÞr2Þ. Note the distinction between k and j; these
parameters are used to define the ratio of the Gaussian

variances to the Gaussian component variance for the non-

Gaussian likelihood case and the non-Gaussian prior case,

respectively.

An example of the setup of this simple scalar example is

shown in Fig. 2. In the left-hand panel the non-Gaussian

prior case which was the focus of Fowler and van Leeuwen

(2012) is illustrated and in the right-hand panel the non-

Gaussian likelihood case is illustrated. The values of k and

j have been chosen such that r2
y=r

2
x is fixed in the two

setups, where r2
y is the variance of the likelihood (either

Gaussian or not) and r2
x is the variance of the prior (which

also may or may not be Gaussian).

We see in eq. (14) that the sensitivity tends towards an

upper bound of k
kþ1

as the likelihood becomes Gaussian

(m1�m2 tends to zero) with no lower bound when the like-

lihood has two distinct modes (i.e. ðl1 � l2Þ
2
=r2 is large).

In contrast, in eq. (15), the sensitivity tends towards a lower

bound of 1
jþ1

as the prior becomes Gaussian with no upper

bound when the prior has two distinct modes. The lack of

lower and upper bounds for the non-Gaussian likelihood

case and non-Gaussian prior case, respectively, has an

important consequence for the analysis error variance.

From the relationship between the sensitivity and posterior

variance given in Section 2 we can conclude that when

SGM2pðyjxÞB0 that r2
a > r2

x and similarly when SGM2pðxÞ > 1

that r2
a > r2

y. In theory this should never be the case for
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Fig. 1. Skewness (left) and kurtosis (right) of the GM2 distribution as a function of w and m2�m1 when s2�1.
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purely Gaussian data assimilation. The potential for the

analysis error variance to be greater than the observation

and prior error variances was similarly demonstrated

for the case of errors following an exponential law in

Talagrand (2003) and when a particle filter is used to

assimilate observations with a non-linear model of the

Agulhas Current in van Leeuwen (2003).

As a function of the innovation, d�y�mx, the shape of

SGM2pðyjxÞ is similar to SGM2pðxÞ although inverted. In each

case the sensitivity is a symmetrical function of d about a

central value. In the non-Gaussian likelihood case, this

value of d, d1, marks a minimum value of SGM2pðyjxÞ. In the

non-Gaussian prior case, this value of d, dp, marks a

maximum value of SGM2pðxÞ. In general dl 6¼ dp unless all

parameters are identical with w�1/2. Away from d1 and dp
the sensitivity tends to k

kþ1
for the non-Gaussian likelihood

case and 1
jþ1

for the non-Gaussian prior case, as could

be expected from the symmetry between k and 1=j. When

the parameters describing the non-Gaussian distribution

are the same, the relative speed at which the sensitivity

asymptotes to k
kþ1

or 1
jþ1

depends on the values of k and j,

respectively, if k ¼ j then it is the same.

An example of this is shown in Fig. 3, where s2�1,

w�0.25, m1�m2�3 for both the non-Gaussian likelihood

and non-Gaussian prior. j ¼ 2 for comparison to the

example in Fowler and van Leeuwen (2012) and k is

chosen to be 1849/512 so that in each case the Gaussian

approximation to the sensitivity is the same, that is SG ¼
r2

xðr2
x þ r2

yÞ
�1

stays constant even though r2
x and r2

y are not

identical in the two cases, in fact the error variances for the

prior and likelihood are larger in the non-Gaussian like-

lihood case than in the non-Gaussian prior case (see Fig. 2).

From eq. (12) and (13) k > j implies that SGM2pðyjxÞ is a

broader function of d (thin blue line) than SGM2pðxÞ (thin

black line) and there is less variance in the sensitivity. This

illustrates, that unlike the Gaussian case, the sensitivity is

now dependent on the actual values of the error variances

rather than just their ratio. The Gaussian approximation to

the sensitivity, SG, is given by the bold dashed line.

As NdN increases ~w tends to 0/1 in both cases, in effect

rejecting one of the modes. In other words the posterior

asymptotes to a Gaussian with variance given by ~r2 ¼ kr2

1þk

in the case of a non-Gaussian likelihood and ~r2 ¼ jr2

1þj in the

case of a non-Gaussian prior. This explains why the

sensitivity, which is given by eq. (10) in the non-Gaussian

likelihood case and by eq. (11) in the non-Gaussian prior

case, tends to a non-zero constant value as NdN increases. It

also explains (with some extra thought) why in the non-

Gaussian likelihood case this constant sensitivity is greater

than the Gaussian approximation and vice versa when the

prior is non-Gaussian.

The value of d, which results in a peak value of SGM2pðxÞ,

was given in Fowler and van Leeuwen (2012) in terms of

the parameters of the non-Gaussian prior.

dp ¼
1

2ðl1 � l2Þ
l2

1 � l2
2 � 2ð1þ jÞr2 ln

w

ð1� wÞ

 !" #
� lx:

(16)

We may similarly find an expression for d1, which results

in a minimum value of SGM2pðyjxÞ, when the likelihood is

Fig. 2. Schematic of experimental setup in section 3. Left hand panel: Non-Gaussian prior and Gaussian likelihood as in Fowler and

van Leeuwen (2012). Right hand panel: Non-Gaussian likelihood and Gaussian prior, which is the focus of this paper. In each case the

non-Gaussian parameters are given by w ¼ 0:25, r2 ¼ 1, jl1 � l2j ¼ 3. The variance of the Gaussian distributions are chosen such that in

each case r2
y=r

2
x ¼ 32

43
, for agreement with Fowler and van Leeuwen (2012), giving k�1849/512 and j ¼ 2.
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non-Gaussian. From eq. (10) we know that as the sen-

sitivity increases the analysis error variance decreases.

Therefore when the posterior is of the same form as eq.

(12), the posterior variance is at a maximum, and hence the

sensitivity is at a minimum, when the posterior weights are

equal, i.e. the posterior is symmetric. This insight allows us

to find the observation value for which the analysis has

least sensitivity by finding the d which satisfies ~w ¼ 0:5.

dl ¼
1

2ðl2 � l1Þ
ðl2 � l1Þ

2ð1� 2wÞ þ 2r2ð1þ kÞ ln 1� w

w

� �
(17)

Note that in deriving eq. (17) we have made use of the fact

that for d ¼ y� lG
x ¼ l2 � wðl2 � l1Þ � lG

x the terms lG
x ,

w and m1�m2 are considered to be fixed. Therefore we only

need to find an expression for m2 which satisfies ~w ¼ 0:5.

This can then be substituted back into the expression for d.

When the weights are equal in the non-Gaussian prior

(i.e. w ¼ 1
2
) dp�0. Similarly when w ¼ 1

2
in the non-

Gaussian likelihood, dl ¼ 0. Therefore, when the prior is

symmetric but with negative kurtosis the analysis is

most sensitive when the mean of the (Gaussian) likelihood

is equal to the mean of the prior. Conversely when the

likelihood is symmetric but with negative kurtosis the

analysis is least sensitive when the mean of the likelihood

is equal to the mean of the (Gaussian) prior.

The results illustrated by the example of Fig. 3 can be

shown for a range of non-Gaussian distributions described

by eq. (12). In Fig. 4, contour plots of SGM2pðyjxÞ=SG (left

column) and SGM2pðxÞ=SG (right column) are given as a

function of d and m2�m1 (top row) and w (bottom row).

In all cases k and j are varied such that SG remains the

same value as in Fig. 3. In practice this means that as the

variance of the non-Gaussian distribution is increased as

a result of the parameters describing the distribution

changing, the variance of the Gaussian distribution is

similarly increased. Indicated in Fig. 4 is the increasing

negative kurtosis as l2 � l1 increases and the increasing

skewness as jw� 0:5j increases, see Fig. 1 for comparison.

As expected the error in the Gaussian approximation to

the sensitivity becomes larger as the skewness and kurtosis

of the likelihood/prior increases. The magnitude of the

error in the Gaussian approximation to the sensitivity is

larger when the prior is non-Gaussian, because in this

case SG > 0:5 leading to a narrower function of sensitivity

than when the likelihood is non-Gaussian, as explained

previously. If SGB0:5 then the error in the Gaussian

approximation to the sensitivity would be larger when the

likelihood is non-Gaussian. The gradient in the maximum/

minimum sensitivity as a function of w (see Figs. 2c and 2d)

can be derived from eqs. (16) and (17).

3.1. Comparison of sensitivity to other measures of

observation impact

The focus of Fowler and van Leeuwen (2012) was to

compare the effect of a non-Gaussian prior on different

measures of observation impact. It was seen that like the
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0.4

0.5

0.6

0.7

0.8

0.9

1

d

se
ns

iti
vi

ty
non Gaussian prior
non−Gaussian likelihood
1/(κ +1)
k/(k+1)
Gaussian approx
dp

dl

Fig. 3. Comparison of S ¼ @la

@y
as a function of d when the likelihood is non-Gaussian (prior is Gaussian) (thin blue line) and when the

prior is non-Gaussian (likelihood is Gaussian) (thin black line). In each case the non-Gaussian distribution is a two component Gaussian

mixture with identical variances with parameter values as in Fig. 2. The variance of the Gaussian distributions, also given in Fig. 2, are

chosen such that the Gaussian estimate to the sensitivity is the same in each case (bold, dashed line). Also marked on is k
kþ1

(bold blue line)

and 1
jþ1

(bold black line), and dp (black dashed line) and dl (blue dashed line).
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sensitivity, the error in the Gaussian approximation to

relative entropy was a strong function of the innovation.

The strong dependence of both the error in the sensitivity

and the error in the relative entropy on the innovation

means that there is no consensus as to the effect of a non-

Gaussian prior on the observation impact for a given

observation value. A similar conclusion can be arrived at

when the likelihood is non-Gaussian by comparing Figs. 4a

and 4c to 5a and 5c, in which fields of S=SG and RE=REG

have been plotted, respectively.

Relative entropy [see eq. (8)] is loosely related to the

sensitivity in two ways:

(1) As seen when relative entropy was first introduced,

relative entropy is dependent on the shift of the

posterior distribution away from the prior. The shift

of the posterior distribution away from the prior,

given by la � lx, is proportional to the sensitivity of

ma to y due to the following relationship:

@Hla

@y
þ @Hla

@Hlx

¼ Im; (18)

where Im is an identity matrix of size m (see

Appendix A).

As a function of d, the error in the Gaussian

approximation to the shift in the posterior away

from the prior will be smallest when la � lx. This

is only approximate because, unlike in the purely

Gaussian case, y ¼ lx does not necessarily imply that

la ¼ lx In Fowler and van Leeuwen (2012) this was

wrongly assumed to be true. However, as seen in the

example given in Fig. 3, the sensitivities are almost

equal to the Gaussian approximation of the sensitivity

at d�0. Therefore when y ¼ lx, ma is very close to mx
when either the prior or likelihood is non-Gaussian.

Away from this the Gaussian approximation will

underestimate the shift when it underestimates the

sensitivity and similarly overestimate the shift when it

overestimates the sensitivity.

(2) Relative entropy also measures the reduction in the

uncertainty between the prior and posterior. This is

strongly linked to the posterior variance: the larger

the posterior variance the smaller the reduction in

uncertainty. The sensitivity’s relationship to the poste-

rior error variance is given by eqs. (10) and (11).

Therefore when the likelihood is non-Gaussian the

reduction in uncertainty is overestimated when the

sensitivity is overestimated and when the prior is
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non-Gaussian the reduction in uncertainty is under-

estimated when the sensitivity is overestimated.

These two comments explain why in Fowler and van

Leeuwen (2012) it was found that the error in relative

entropy was generally of a smaller magnitude than the

error in sensitivity as the two processes above cancel to

some degree. It also explains why in this case, when it is the

likelihood that it is non-Gaussian, that the error in relative

entropy is generally of a greater magnitude than the error

in sensitivity as the two processes above reinforce each

other to some degree. This can be seen by comparing Figs.

4 and 5.

These two comments also explain the asymmetry in the

error in relative entropy as a function of d when w 6¼ 1
2
[see

Figs. 5c and 5d]. When w 6¼ 1
2
the minimum in error in the

shift of the posterior at d � 0 does not coincide with the

maximum (minimum) in the reduction in the posterior

variance at d ¼ dpðlÞ.

Because of the large variability in the sensitivity and

relative entropy as a function of observation value it is

useful to look at their averaged values,
R

pðyÞSdy andR
pðyÞREdy. The latter is known as mutual information,

a measure of the change in entropy when an observation

is assimilated (see Section 1.1.1 and Cover and Thomas,

1991).

On average the Gaussian approximation to the non-

Gaussian likelihood underestimates the observation impact

[see Figs. 6a and 6c]. This is because the Gaussian estimate

of the likelihood underestimates the structure and hence the

information in the likelihood. This is analogous to the non-

Gaussian prior case presented in Fowler and van Leeuwen

(2012) where on average the Gaussian approximation to

the non-Gaussian prior overestimated the observation

impact due to it underestimating the structure in the prior

(see Figs. 6b and 6d).

As expected from mutual information’s relation to

relative entropy and consequently relative entropy’s rela-

tion to the sensitivity, the error in the Gaussian approxi-

mation to MI is greater than the error in the Gaussian

approximation to
R

pðyÞSdy when the true likelihood is

non-Gaussian and vice versa when it is the prior that is

non-Gaussian.

A summary of some of the key differences between

observation impact when the likelihood and prior are non-

Gaussian, as discussed in this Section are given in Table 1.

In this section we have studied the observation impact

when a non-Gaussian distribution as described by a two-

component Gaussian mixture with identical variances,

given by eq. (10), is introduced. This has allowed us to

understand how the source of non-Gaussian structure

affects the different measures of observation impact when
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the distributions are skewed or have non-zero kurtosis.

At the ECMWF, a mixed Gaussian and exponential

distribution, known as a Huber function, has recently

been introduced to model the observation error for some

in-situ measurements (Tavolato and Isaksen, 2009/2010)

during quality control. In the next section we will give a

brief overview of the observation impact in this specific

case.

4. The Huber function

The Huber function has been shown to give a good fit to

the observation minus background differences seen in

temperature and wind data from sondes, wind profilers,

aircrafts, and ships (Tavolato and Isaksen, 2009/2010).

From non-Gaussian observation minus background diag-

nostics it is difficult to derive the observations error

structure alone (Pires et al., 2010). However, due to the

difficulty in designing a data assimilation scheme around

non-Gaussian prior errors, it is a pragmatic choice to

assign the non-Gaussian errors to the observations only.

The Huber function is described by the following

pðyjxÞ ¼

1

r
ffiffiffiffi
2p
p expða2

2
� jadjÞ if dBa

1

r
ffiffiffiffi
2p
p expð� 1

2
d2Þ if a � d � b

1

r
ffiffiffiffi
2p
p expðb2

2
� jbdjÞ if d > b

8><>: ; (19)

where d ¼ y�HðxÞ
r ¼ d=r. The distribution is therefore char-

acterised by the following four parameters: y, the observa-

tion value, s2; the variance of the Gaussian part of the

distribution; and the parameters a and b which define the

region and the extent of the exponential tails. Therefore as

a and b are increased the Huber function relaxes back to a

Gaussian distribution.
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The Huber function (Huber, 1973), results in a mixture of

the l2 norm traditionally used in variational data assimila-

tion when the residual, d, is small (analogous to a Gaussian

distribution) and l1 norm when the residual is large. Com-

pared to a Gaussian with the same standard deviation

this distribution is more peaked and has fatter tails. As

such this is poorly represented by the GM2 distribution. In

particular the Huber norm leads to distributions with

positive kurtosis values, while the GM2 distribution can

only give negative kurtosis values for a symmetric distri-

bution. As with the GM2 distribution it is possible to

model skewed distributions with the Huber function when

jaj 6¼ jbj.
Despite the differences between the Huber function and

GM2, the same general conclusions already made about

observation impact can be applied:

(1) The sensitivity can be a strong function of the

innovation:

This is illustrated in Fig. 7. In this example a��0.5,

b�1 and s2�2. It is seen that the analysis sensitivity

reduces to zero as the observed value gets further

from the prior (NdN increases), clear evidence that the

Huber function robustly ensures that useful observa-

tions contribute to the analysis whilst observations

inconsistent with the prior have no impact. This is

in contrast to when the likelihood is assumed to be

Gaussian and the sensitivity is constant (dashed line).

From eq. (8) we can conclude that the peak in

sensitivity close to high prior probability coincides

with a minimum in the analysis error variance and

as NdN increases the analysis error variance tends

towards that of the background.

(2) The error in the relative entropy assuming a

Gaussian likelihood is of a greater magnitude than

the error in the sensitivity:

This is illustrated in Fig. 8. The error in the relative

entropy is also asymmetric unlike the error in the

sensitivity which is symmetric. This was explained in

Section 3.

(3) On average the observation impact is underesti-

mated when a Gaussian likelihood is assumed:

This is also illustrated in Fig. 8. As was seen in the

previous section, the Gaussian approximation to

mutual information (red) is much poorer that the

Gaussian approximation to the averaged sensitivity

(black dashed line).

5. Conclusions and discussion

This work has followed on from the work of Fowler and

van Leeuwen (2012), in which the effect of a non-Gaussian

prior on observation impact was studied. Here we have

compared this to the effect of a non-Gaussian likelihood

(non-Gaussian observation error).

There has been much recent research activity in devel-

oping non-Gaussian data assimilation methods which are

applicable to the Geosciences. It is assumed that by pro-

viding a more detailed and accurate description of the error

distributions that the information provided by the observa-

tions and models will be used in a more optimal way. The

aim of this work has been to understand how moving away

from the Gaussian assumptions traditionally made in

data assimilation will affect the impact that observations

have. This analytical study differs from previous studies of

observation impact in non-Gaussian DA, such as Bocquet

(2008) and Kramer et al. (2012), in which particular case

studies were considered.

In Gaussian data assimilation it is known that the impact

of observations on the analysis, as measured by the analysis

sensitivity to observations and mutual information, can

be understood by studying the ratio of HBHT to R. To use

Table 1. Comparison of a non-Gaussian likelihood’s and non-Gaussian prior’s effect on the observation impact

non-Gaussian likelihood/Gaussian prior non-Gaussian prior/Gaussian likelihood

@la

@ly
¼ 1� r2

a=r
2
x in the scalar case. @la

@ly
¼ r2

a=r
2
y in the scalar case

Sensitivity is bounded by �1 and 1. Sensitivity is bounded by 0 and �.

As a function of innovation the peak in sensitivity coincides

with a minimum in analysis error covariance.

As a function of innovation the peak in sensitivity coincides with a

maximum in analysis error covariance.

Variability (as a function of d) in the error of the Gaussian

approximation to sensitivity is smaller than the error in the relative

entropy.

Variability (as a function of d) in the error of the Gaussian

approximation to sensitivity is larger than the error in the relative

entropy.

On average Gaussian approximation underestimates observation

impact.

On average Gaussian approximation overestimates observation

impact.

The error in the Gaussian approximation to the average sensitivity

is larger than the error in the Gaussian approximation to

mutual information (the average relative entropy).

The error in the Gaussian approximation to the average sensitivity

is smaller than the error in the Gaussian approximation to mutual

information.
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relative entropy to measure the observation impact, it is

also necessary to know the values of the observation and

the prior estimate of the state. When the assumption of

Gaussian statistics are relaxed we have shown that the

impact of the observations on the analysis becomes much

more complicated and a deeper understanding of the metric

used to measure the impact as well as the source of the non-

Gaussian structure is necessary.

We have shown that there exists an interesting asymme-

try in the relationship of the analysis sensitivity to the

analysis error covariance between the two sources of non-

Gaussian structure. This means that relaxing the assump-

tion of a Gaussian likelihood has a very different effect on

observation impact, as given by this metric, than relaxing

the assumption of a Gaussian prior. The sensitivity’s

dependence upon the analysis error variance only also
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means that it does not measure the full influence of the

observations and may erroneously indicate a degradation of

the analysis due to the assimilation of the observations.

From this we can conclude that the sensitivity of the

analysis to the observations is no longer a useful measure

of observation impact when non-Gaussian errors are con-

sidered. However the fact that it is possible to derive

analytically its relationship with the analysis error covar-

iance, has helped to give us insight into the different effects

the two sources of non-Gaussian structure have on relative

entropy and mutual information. These measures are much

more suitable in the case of non-Gaussian error statistics

because they take into account the effect of the observations

on the full posterior distribution whilst still having a clear

physical interpretation. Mutual information has the added

benefit that it is independent of the observation value,

and so provides a consistent measure of the observation

impact as an experiment is repeated. It is also always

positive by construction and so will always measure an

improvement in our estimate of the state when observations

are assimilated. However, as a consequence mutual infor-

mation is more difficult to measure in non-Gaussian data

assimilation because it involves averaging over observation

space.

We have illustrated these findings in the case when the

non-Gaussian distribution is modelled by a two component

Gaussian mixture. This has allowed for an analytical study

of the effect of increasing the skewness and bimodality

on observation impact, and has helped to emphasise the

differing effect of the source of the non-Gaussian structure

on observation impact. The key conclusions from this

analytical study have been shown to be applicable to other

non-Gaussian distributions such as the Huber function.

The work presented here has been restricted to the case

when the map between observation and state space is

linear. However, there are many observation types which

are not linearly related to state variables, for example,

satellite radiances are a non-linear function of temperature,

humidity, etc., throughout the depth of the atmosphere.

In this case, even if the observation error were Gaussian,

a non-linear observation operator would result in a non-

Gaussian likelihood in state space. The results shown in

this paper are not directly applicable to this source of

non-Gaussianity, as the structure of the likelihood function

in state space is now dependent on the observation value.

This makes an analytical study much more difficult as

shown in appendix A.3. A study of the effect of a non-

linear observation operator is left for future work.
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7. Appendix

A.1. The sensitivity of the analysis mean to the

likelihood mean

Bayes’ theorem states that the probability of the state, x,

given information y can be derived from the prior prob-

ability of x and the likelihood.

pðxjyÞ ¼ pðxÞpðyjxÞ
pðyÞ

: (20)

where pðyÞ ¼
R

pðxÞpðyjxÞdx.

The analysis can be given by the mean of the posterior,

la ¼
Z

xpðxjyÞdx: (21)

Substituting eqs. (20) into (21) we see that the analysis is

only dependent on the observation value through the like-

lihood, p(yNx). The sensitivity of the analysis in observation

space to the observation value, y ¼ lyðþconstÞ, is then

given by

@Hla

@ly

¼

R
HxpðxÞ @pðyjxÞ

@ly
dxR

pðxÞpðyjxÞdx
�Hla

R
pðxÞ @pðyjxÞ

@ly
dxR

pðxÞpðyjxÞdx
: (22)

Recall that H is the (linear) operator which transforms a

vector from state to observation space.

It is also of interest to look at the sensitivity of the analysis

to the mean of the prior, lx, in observation space. In this

case it is only the prior, p(x), in eq. (20) which is sensitive to

lx and so the sensitivity of the analysis to the mean of the

prior is given by

@Hla

@Hlx

¼
R

HxpðyjxÞ @pðxÞ
@Hlx

dxR
pðxÞpðyjxÞdx

�Hla

R
pðyjxÞ @pðxÞ

@Hlx
dxR

pðxÞpðyjxÞdx
: (23)

In the following subsections we will show that it is possible

to evaluate these sensitivities when either the prior or

likelihood are Gaussian.

A.2. Non-Gaussian prior, Gaussian likelihood

Let p(x) be arbitrary and p(yNx) be Gaussian with mean

lyand error covariance R.

pðyjxÞ ¼ ðð2pÞmjRjÞ�
1
2 exp � 1

2
ðly �HxÞTR�1ðly �HxÞ

� �
:

(24)
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Here m is the size of observation space. Therefore

@pðyjxÞ
@ly

¼ �pðyjxÞðly �HxÞTR�1: (25)

A.2.1. Analysis sensitivity to observations. Equation (25)

can be substituted into eq. (22) to give

@Hla

@ly

¼ �Hla lT
y R�1 þ

Z
HxxTHTR�1pðxjyÞdx

þHlal
T
y R�1 �Hlal

T
a HTR�1: (26)

Note that
R

xxTpðxjyÞdx� lal
T
a is the analysis error

covariance matrix, Pa. eq. (26) therefore simplifies to

@Hla

@ly

¼ HPaHTR�1: (27)

A.2.2. Analysis sensitivity to background. In calculating

the sensitivity with respect to the background (the mean of

the prior), in this case, we do not have access to @pðxÞ
@Hlx

.

However we do know @pðxÞ
@Hlx
¼ � @pðxÞ

@Hx
as the change in the

probability caused by perturbing the value of x is the same

as perturbing lx by the same magnitude but in the opposite

direction. Therefore we can utilise integration by parts, that

is,
R

u @v
@x

dx ¼ uv �
R
@u
@x

vdx.

First evaluate the first term of eq. (23):

Let u ¼ HxpðyjxÞand @v
@x
¼ @pðxÞ

@Hx
. Therefore @u

@x
¼ HpðyjxÞðInþ

xðly �HxÞTR�1HÞ. v can be found by noting @pðxÞ
@x

HT ¼
@pðxÞ
@Hx

@Hx
@x

HT, it then follows that v ¼ pðxÞHTðHHTÞ�1
.R

HxpðyjxÞ @pðxÞ
@Hlx

dx ¼ �
R

HxpðyjxÞ @pðxÞ
@Hx

dx

¼ � pðyjxÞpðxÞHxHTðHHTÞ�1
h i1

�1
þ
R

pðyjxÞpðxÞHðInþ xðly �HðxÞTÞR�1HÞHTðHHTÞ�1
dx:

(28)

The first term of eq. (23) is then

Im þHlal
T
y R�1 �H

Z
pðxjyÞxxTdxHTR�1: (29)

Likewise we may evaluate the second term of eq. (23):

Let u ¼ pðyjxÞ and @v
@x
¼ @pðxÞ

@Hlx
again. Therefore

@u
@x
¼ ðly �HðxÞÞTR�1HpðyjxÞ and v is unchanged.Z
pðyjxÞ @pðxÞ

@Hlx

dx ¼ �
Z

pðyjxÞ @pðxÞ
@Hx

dx

¼ � pðyjxÞpðxÞHTðHHTÞ�1
h i1

�1

þ
Z
ðly �HðxÞÞTR�1HpðyjxÞpðxÞHTðHHTÞ�1

dx:

(30)

The second term of eq. (23) is then

�Hlal
T
y R�1 þHlal

T
a HTR�1: (31)

It then follows that

@Hla

@Hlx

¼ Im �HPaHTR�1 (32)

A.3. Non-Gaussian likelihood, Gaussian prior

Let p(yNx) be arbitrary and p(x) be Gaussian with mean

lxand error covariance B.

pðxÞ ¼ ðð2pÞpjBjÞ�
1
2 exp � 1

2
ðlx � xÞTB�1ðlx � xÞ

� �
: (33)

Therefore

@pðxÞ
@Hlx

¼ �pðxÞðlx � xÞTB�1HTðHHTÞ�1
: (34)

A.3.1. Analysis sensitivity to observations. The derivation

of @Hla

@ly
is analogous to the derivation of @Hla

@Hlx
in the previous

section, as @pðyjxÞ
@ly

in this case is unknown and so we must

make use of integration by parts.

It can be shown that in this case

@Hla

@ly

¼ Im �HPaB�1HTðHHTÞ�1
(35)

A.3.2. Analysis sensitivity to background. The derivation

of @Hla

@Hlx
is analogous to the derivations of @Hla

@ly
in the previous

section as @pðxÞ
@lx

in this case is known.

@Hla

@Hlx

¼ HPaB�1HTðHHTÞ�1
: (36)

From this we can conclude that when either the prior or

likelihood is Gaussian it is always the case that:

@Hla

@ly

þ @Hla

@Hlx

¼ Im (37)

A.4. Non-linear observation operator

Following a similar methodology as in Appendix A.2 and

A.3, the analysis sensitivity to the observations when the
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observation operator is non-linear, represented by h(x), can

be shown to be

@hðlaÞ
@ly

¼ H

Z
xðhðxÞÞTR�1pðxjyÞdx

�
�la

Z
ðhðxÞÞTR�1pðxjyÞdx

�
;

(38)

where H is the observation operator linearised about

the analysis. In this expression it has been assumed that

the likelihood in observation space is Gaussian, i.e.

y � Nðly;RÞ but no assumptions about the prior have

been necessary. When h(x) is non-linear there is no longer a

clear relationship between the sensitivity and the analysis

error covariance matrix.
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