30 research outputs found

    Distribution of deep-water corals, sponges, and demersal fisheries landings in Southern California, USA: implications for conservation priorities

    Get PDF
    Deep-sea corals in Southern California are diverse and abundant but subject to multiple stressors, including bottom-contact fisheries using mobile and fixed gear. There is a need for more information on the distribution of these taxa in relation to the distribution of demersal fishing effort, and the distribution of marine protected areas, in order to improve spatial planning. There are many marine managed areas in Southern California, including essential fish habitat (EFH) areas, conservation areas, and a national marine sanctuary, but specific areas of overlap between bottom fishing and benthic epifauna are poorly known. Groundfish surveys were conducted by the National Marine Fisheries Service using a remotely operated vehicle throughout Southern California between 2003 and 2011 to document abundance and distribution of deep-water rockfish and flatfish to a depth of 500 m. Corals and sponges were also common in these images, providing an opportunity to examine these communities. Analyses of 34,792 still images revealed abundance and diversity of coral and sponge taxa, as well as frequency of fishing debris. The occurrence data were overlaid in a geographic information system with landings data for deep-water (>50 m) demersal fisheries to identify areas of spatial overlap. Corals or sponges were observed in 23% of images. A total of 15 coral genera and six sponge morphotypes were identified. A total of 70 species codes were targeted by deep-water demersal fisheries operating below 50 m for years 2007–2011. A novel priority-setting algorithm was developed to identify areas of high richness, abundance, and fishing intensity (RAFi). Several highly-ranked areas were already protected as EFH (Footprint, Piggy Bank). Other highly-ranked sites (West Catalina Island, San Clemente Island, 9-Mile Bank, Santa Rosa Flats) were encompassed by transient gear restrictions, such as Rockfish conservation areas, but are now recommended for permanent protection by the Pacific Fishery Management Council

    Deep coral and associated species taxonomy and ecology: (DeepCAST) II Expedition Report, Roatan, Honduras, May 21-28, 2011

    Get PDF
    NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology

    Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific

    Get PDF
    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region

    A survey of deep-water coral and sponge habitats along the west coast of the US using a remotely operated vehicle: NOAA Fisheries Survey Vessel (FSV)'Bell M. Shimada', November 1-5, 2010

    Get PDF
    Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna

    Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity

    Get PDF
    Ocean acidification is a threat to the net growth of tropical and deep-sea coral reefs, due to gradual changes in the balance between reef growth and loss processes. Here we go beyond identification of coral dissolution induced by ocean acidification and identify a mechanism that will lead to a loss of habitat in cold-water coral reef habitats on an ecosystem-scale. To quantify this, we present in situ and year-long laboratory evidence detailing the type of habitat shift that can be expected (in situ evidence), the mechanisms underlying this (in situ and laboratory evidence), and the timescale within which the process begins (laboratory evidence). Through application of engineering principals, we detail how increased porosity in structurally critical sections of coral framework will lead to crumbling of load-bearing material, and a potential collapse and loss of complexity of the larger habitat. Importantly, in situ evidence highlights that cold-water corals can survive beneath the aragonite saturation horizon, but in a fundamentally different way to what is currently considered a biogenic cold-water coral reef, with a loss of the majority of reef habitat. The shift from a habitat with high 3-dimensional complexity provided by both live and dead coral framework, to a habitat restricted primarily to live coral colonies with lower 3-dimensional complexity represents the main threat to cold-water coral reefs of the future and the biodiversity they support. Ocean acidification can cause ecosystem-scale habitat loss for the majority of cold-water coral reefs.BN/Marie-Eve Aubin-Tam La

    Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals

    Get PDF
    The Li/Mg, Sr/Ca and oxygen isotopic (O) compositions of many marine biogenic carbonates are sensitive to seawater temperature. Corals, as cosmopolitan marine taxa with carbonate skeletons that can be precisely dated, represent ideal hosts for these geochemical proxies. However, efforts to calibrate and refine temperature proxies in cold-water corals (<20 °C) remain limited. Here we present skeletal Li/Mg, Sr/Ca, O and carbon isotope (C) data from live-collected specimens of aragonitic scleractinian corals (Balanophyllia, Caryophyllia, Desmophyllum, Enallopsammia, Flabellum, Lophelia, and Vaughanella), both aragonitic and high-Mg calcitic stylasterid genera (Stylaster and Errina), and shallow-water high-Mg calcite crustose coralline algae (Lithophyllum, Hydrolithon, and Neogoniolithon). We interpret these data in conjunction with results from previously explored taxa including aragonitic zooxanthellate scleractinia and foraminifera, and high-Mg calcite octocorals. We show that Li/Mg ratios covary most strongly with seawater temperature, both for aragonitic and high-Mg calcitic taxa, making for reliable and universal seawater temperature proxies. Combining all of our biogenic aragonitic Li/Mg data with previous calibration efforts we report a refined relationship to temperature: Li/MgAll Aragonite = (). This calibration now permits paleo-temperature reconstruction to better than ±3.4 °C (95% prediction intervals) across biogenic aragonites, regardless of taxon, from 0 to 30 °C. For taxa in this study, aragonitic stylasterid Li/Mg offers the most robust temperature proxy (Li/MgStylasterid (Arag) = ()) with a reproducibility of ±2.3 °C. For the first time, we show that high-Mg calcites have a similar exponential relationship with temperature, but with a lower intercept value (Li/Mg = ()). This calibration opens the possibility of temperature reconstruction using high-Mg calcite corals and coralline algae. The commonality in the relationship between Li/Mg and temperature transcends phylogeny and suggests abiogenic trace metal incorporation mechanism

    Rapid Assessment of Octocoral Diversity and Habitat on Saba Bank, Netherlands Antilles

    Get PDF
    Saba Bank is a large submerged platform (∼2200 km2), average depth 30 m, located 4 km southwest of Saba Island in Netherlands Antilles, Caribbean Sea. Ships traveling to and from oil terminals on nearby St. Eustatius routinely anchor on the Bank, damaging benthic megafauna. Gorgonian octocorals are vulnerable to anchor damage, and they are common and conspicuous in shallow water (15–50 m) around the banks. This prompted a rapid assessment of octocoral habitat and diversity. The primary objectives were to estimate total species richness and to characterize habitats vis a vis gorgonians. Landsat imagery and multibeam bathymetry were employed to identify random sites for quantitative transects. A Seabotix LBV200L remotely operated vehicle (ROV) and SCUBA were used to collect and survey to 130 m. A total of 14 scuba dives and 3 ROV dives were completed in 10 days. During that time, 48 octocoral species were collected, including two likely undescribed species in the genera Pterogorgia and Lytreia. Gorgonian richness was exceptional, but not all species were collected, because the species accumulation curve remained steeply inclined after all surveys. Two shallow-water gorgonian habitat types were identified using multidimensional scaling and hierarchical cluster analyses: 1) a high diversity, high density fore-reef environment characterized by Eunicea spp., Gorgonia spp., and Pseudopterogorgia spp. and 2) a low diversity, low density plateau environment characterized by Pseudopterogorgia acerosa, Pterogorgia guadalupensis, and Gorgonia mariae. The analyses support hypotheses of broad (∼15 km) habitat homogeneity (ANOSIM, P>0.05), but a significant difference between fore-reef and plateau environments (ANOSIM, P<0.05). However, there was some indication of habitat heterogeneity along the 15 km study section of the 50 km platform edge along the southeast rim. Our results highlight the complexity and biodiversity of the Saba Bank, and emphasize the need for more scientific exploration

    Ba/Ca of stylasterid coral skeletons records dissolved seawater barium concentrations

    Get PDF
    The concentration of dissolved barium in seawater ([Ba]SW) is influenced by both primary productivity and ocean circulation patterns. Reconstructing past subsurface [Ba]SW can therefore provide important information on processes which regulate global climate. Previous Ba/Ca measurements of scleractinian and bamboo deep-sea coral skeletons exhibit linear relationships with [Ba]SW, acting as archives for past Ba cycling. However, skeletal Ba/Ca ratios of the Stylasteridae – a group of widely distributed, azooxanthellate, hydrozoan coral – have not been previously studied. Here, we present Ba/Ca ratios of modern stylasterid (aragonitic, calcitic and mixed mineralogy) and azooxanthellate scleractinian skeletons, paired with published proximal hydrographic data. We find that [Ba]SW and sample mineralogy are the primary controls on stylasterid Ba/Ca, while seawater temperature exerts a weak secondary control. [Ba]SW also exerts a strong control on azooxanthellate scleractinian Ba/Ca. However, Ba-incorporation into scleractinian skeletons varies between locations and across depth gradients, and we find a more sensitive relationship between scleractinian Ba/Ca and [Ba]SW than previously reported. Paired Sr/Ca measurements suggest that this variability in scleractinian Ba/Ca may result from the influence of varying degrees of Rayleigh fractionation during calcification. We find that these processes exert a smaller influence on Ba-incorporation into stylasterid coral skeletons, a result consistent with other aspects of their skeletal geochemistry. Stylasterid Ba/Ca ratios are therefore a powerful, novel archive of past changes in [Ba]SW, particularly when measured in combination with temperature sensitive tracers such as Li/Mg or Sr/Ca. Indeed, with robust [Ba]SW and temperature proxies now established, stylasterids have the potential to be an important new archive for palaeoceanographic studies

    Tuna Longline Fishing around West and Central Pacific Seamounts

    Get PDF
    BACKGROUND: Seamounts have been identified as aggregating locations for pelagic biodiversity including tuna; however the topography and prevailing oceanography differ between seamounts and not all are important for tuna. Although a relatively common feature in oceanic ecosystems, little information is available that identifies those that are biologically important. Improved knowledge offers opportunities for unique management of these areas, which may advance the sustainable management of oceanic resources. In this study, we evaluate the existence of an association between seamounts and tuna longline fisheries at the ocean basin scale, identify significant seamounts for tuna in the western and central Pacific Ocean, and quantify the seamount contribution to the tuna longline catch. METHODOLOGY/PRINCIPAL FINDINGS: We use data collected for the Western and Central Pacific Ocean for bigeye, yellowfin, and albacore tuna at the ocean basin scale. GLMs were applied to a coupled dataset of longline fisheries catch and effort, and seamount location information. The analyses show that seamounts may be associated with an annual longline combined catch of 35 thousand tonnes, with higher catch apparent for yellowfin, bigeye, and albacore tuna on 17%, 14%, and 14% of seamounts respectively. In contrast 14%, 18%, and 20% of seamounts had significantly lower catches for yellowfin, bigeye and albacore tuna respectively. Studying catch data in relation to seamount positions presents several challenges such as bias in location of seamounts, or lack of spatial resolution of fisheries data. Whilst we recognize these limitations the criteria used for detecting significant seamounts were conservative and the error in identification is likely to be low albeit unknown. CONCLUSIONS/SIGNIFICANCE: Seamounts throughout the study area were found to either enhance or reduce tuna catch. This indicates that management of seamounts is important Pacific-wide, but management approaches must take account of local conditions. Management of tuna and biodiversity resources in the region would benefit from considering such effects
    corecore