1,195 research outputs found

    Atmospheric effects on crater growth on Venus

    Get PDF
    Laboratory experiments allow examining the consequences of complex processes operating over a wide range of scales (both temporal and spatial) and frequently reveal effects that are obvious only in hindsight. Even though all processes may not scale directly, isolation of the controlling variables allows assessing first-order effects through analytical approximations. This approach can be illustrated by the systematic sequence of ballistic ejection, the response of an atmosphere to a strong energy source, the scaling of ejecta thickness, and the role of secondary cratering. Here it is proposed that the effects of atmospheric pressure and density on crater growth (hence, scaling) observed in laboratory experiments has particular relevance for craters on Venus

    Effect of impact angle on central-peak/peak-ring formation and crater collapse on Venus

    Get PDF
    Although asymmetry in ejecta patterns and craters shape-in-plan are commonly cited as diagnostic features of impact angle, the early-time transfer of energy from impactor to target also creates distinctive asymmetries in crater profile with the greatest depth uprange. In order to simulate gravity-controlled crater-growth, laboratory experiments use loose particulate targets as analogs for low-strength material properties following passage of the shock. As a result, impact crater diameter D in laboratory experiments generally is many times greater than the impactor diameter 2r (factor of 40), and early-time asymmetries in energy transfer from oblique impacts are consumed by subsequent symmetrical crater growth, except at the lowest angles (less than 25 deg). Such asymmetry is evident for oblique (less than 60 deg from horizontal) impacts into aluminum where D/2r is only 2 to 4. Because cratering efficiency decreases with increasing crater size and decreasing impact angle, large scale planetary craters (4080 km) should have transient excavation diameters only 6-10 times larger than the impactor. At basin scales, D/2r is predicted to be only 3-5, i.e., approaching values for impacts into aluminum in laboratory experiments. As a result, evidence for early-time asymmetry in impactor energy transfer should become evident on planetary surfaces, yet craters generally retain a circular outline for all but the lowest impact angles

    Early changes in gradation styles and rates on Mars

    Get PDF
    The wide annulus of massifs and knobs of Isidis and Argyre provided sufficiently large areas for meaningful crater statistics of large craters. Counts were made over adjacent and nested areas in order to test consistency and to derive relative age of each basin. Within the Isidis annulus, charateristic terrains provided counting areas for dating contrasting surface process: channeled hummocky terrain, etched terrains, and intermassif channeled plains. The channeled hummocky terrain contains a high channel density of narrow valley networks cutting both primary Isidis features and old craters. The etched terrains represent a broad region outside the inner high relief massifs of southwestern Isidis where numerous irregular plateaus, mesas, and relict craters indicate a different style of erosion. The intermassif channeled plains occur along the inner mountainous ring. Shallow meandering channels form a large integrated drainage system that is linked to numerous smaller intermountainous basins. These ponds and interconnected tributaries extend beyond the primary inner massif ring through broad canyons

    Timing of ancient extensional tectonic features on Mars

    Get PDF
    Although numerous studies have delineated the Tharsis and post-Tharsis volcanic/tectonic history on Mars, only a few attempts have examined the earlier epochs. This is not an easy task since unambiguous crater ages for pre-Tharsis and early Tharsis units are difficult to determine owing to a variety of active surface processes. Ancient tectonic features, however, have a sufficiently large superposed crater population that should permit relative dating. A technique for crater counting along linear features analagous to areal crater density is proposed. A modification of this approach has been tested and applied to a variety of ancient tectonic features

    Experimental evidence for non-proportional growth of large craters

    Get PDF
    Evidence from laboratory impact experiments is indicating that increasing crater aspect ratios (diameter:depth) can result from increasing both velocity and projectile size without invoking unusual impactor conditions. An extensive data base of experimental impact cratering was analyzed for a variety of impactors and impact velocities for low strength targets. These data indicate a change in cratering efficiency that appears to be related to the onset of projectile deformation or rupture. When all projectile types and sizes are considered, one finds two contrasting relationships between crater aspect ratio and impactor parameter. These relationships are briefly considered

    Momentum transfer from oblique impacts

    Get PDF
    A completely satisfactory experiment would be in a low gravity environment where the effect of momentum imparted by ejecta impacting the surface can be removed or controlled from momentum transfer during impact. Preliminary estimates can be made using a ballistic pendulum. Such experiments were initiated at the NASA-Ames Vertical Gun Range in order to examine momentum transfer due to impact vaporization for oblique impacts. The preliminary results indicate that momentum from oblique impacts is very inefficient: decreasing with increasing impact velocity and perhaps size; increasing with decreasing density; and increasing with increasing impact angle. At face value, such results minimize the effect of momentum transfer by grazing impact; the more probable impact angles of 30 deg would have a greater effect, contrary to the commonly held impression

    Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    Get PDF
    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed

    Debris-cloud collisions: Accretion studies in the Space Station

    Get PDF
    The growth of planetesimals in the Solar System reflects the success of collisional aggregation over disruption. It is widely assumed that aggregation must represent relatively low encounter velocities between two particles in order to avoid both disruption and high-ejecta velocities. Such an assumption is supported by impact experiments and theory. Experiments involving particle-particle impacts, however, may be pertinent to only one type of collisional process in the early Solar System. Most models envision a complex protoplanetary nebular setting involving gas and dust. Consequently, collisions between clouds of dust or solids and dust may be a more relistic picture of protoplanetary accretion. Recent experiments performed at the NASA-Ames Vertical Gun Range have produced debris clouds impacting particulate targets with velocities ranging from 100 m/s to 6 km/s. The experiments produced several intriguing results that not only warrant further study but also may encourage experiments with the impact conditions permitted in a microgravity environment. Possible Space Station experiments are briefly discussed

    Impacts of free-floating objects: Unique Space Station experiments

    Get PDF
    The transfer of momentum and kinetic energy between planetary bodies forms the basis for wide-ranging problems in planetary science ranging from the collective long-term effects of minor perturbations to the catastrophic singular effect of a major collision. In the former case, the evolution of asteroid spin rates and orientations and planetary rotation rates are cited. In the latter case, the catastrophic angular momenta and the near-global disruption of partially molten planets are included. Although the collisional transfer of momentum and energy were discussed over the last two decades, major issues remain that largely reflect current limitations in earth-based experimental conditions and 3-D numerical codes. Two examples with potential applications in a Space Station laboratory are presented
    corecore