research

Debris-cloud collisions: Accretion studies in the Space Station

Abstract

The growth of planetesimals in the Solar System reflects the success of collisional aggregation over disruption. It is widely assumed that aggregation must represent relatively low encounter velocities between two particles in order to avoid both disruption and high-ejecta velocities. Such an assumption is supported by impact experiments and theory. Experiments involving particle-particle impacts, however, may be pertinent to only one type of collisional process in the early Solar System. Most models envision a complex protoplanetary nebular setting involving gas and dust. Consequently, collisions between clouds of dust or solids and dust may be a more relistic picture of protoplanetary accretion. Recent experiments performed at the NASA-Ames Vertical Gun Range have produced debris clouds impacting particulate targets with velocities ranging from 100 m/s to 6 km/s. The experiments produced several intriguing results that not only warrant further study but also may encourage experiments with the impact conditions permitted in a microgravity environment. Possible Space Station experiments are briefly discussed

    Similar works