P.H. Schultz, Department of Geological Sciences, Brown University-Box 1846, Providence, Rhode Island 02912. D.E. Gault, Murphys Center of Planetology Murphys, California.

The transfer of momentum and kinetic energy between planetary bodies forms the basis for wide-ranging problems in planetary science ranging from the collective long-term effects of minor perturbations to the catastrophic singular effect of a major collision. In the former case, we can cite the evolution of asteroid spin rates and orientations ($1,2,3,4$) and planetary rotation rates (5). In the latter case, we include the catastrophic disruption of asteroids (3,6,), sudden but lasting changes in planetary angular momenta (7,8), and the near-global disruption of partially molten planets $(9,10)$. Although the collisional transfer of momentum and energy has been discussed over the last two decades, major issues remain that largely reflect current limitations in earth-based experimental conditions and $3-\mathrm{D}$ numerical codes. Two examples with potential applications in a Space Station laboratory, are presented below.

Asteroid Spin Rates and Orientations: Understanding the transfer of impactor translational momentum to target angular momentum is fundamental to understanding the present-day spin rates, orientations, and spin-limited disruption of asteroids (e.g., see 3). The efficiency of angular momentum transfer is typically expressed as a factor (ζ) ranging from 0 for purely elastic collisions to 1 for inelastic collisions with no ejecta loss (3). Although ζ is usually adopted as unity, Harris (4) prefers a value closer to 0.5 corresponding to a moderate forward-scattering of ejecta. Davis et al., (3) suggest that ejecta are uniformly distributed -- even for low-angle impacts; consequently values of ζ closer to 1 might be justified. Such estimates, however, are largely based on intuition. For vertical impacts into basalt, ejecta carry away 4-6 times the original impactor momentum; therefore, the azimuthal distribution of these ejecta is crucial. For very low-angle impacts, the impactor is ricocheted down-range and carries with it considerable momentum (11). These results would indicate a value of ζ significantly less than 1 . Even lower values may occur for curved surfaces. Recent experiments in easily volatilized material (12) reveal significant differences in the partition of energy at low-impact angles. Such differences might lead to differences in impact-induced spin rates between comets and asteroids (13).

Thus a wide range of values in ζ that depend on impact velocity and target composition/strength can be justified. Experiments are needed wherein free-floating non-spinning and spinning objects of varying strength, porosity, volatility, and strength are impacted at varying impact velocities and angles. A Space Station provides a unique and ideal environment for performing such experiments.

Planetary Disruption/Spin-Rates: The existing rotation periods and total angular momenta of gravitationally bound planets and planet-satelife systems may provide a fundamental link between the accretion and post-accretion stages of planetary evolution. The Moon and Mercury preserve a record of impacts of sufficient energy to produce possible antipodal disruption of the surface as indicated by observations and simplified calculations (9). More sophisticated 2-D axisymmetric finite-element codes reveal that a molten interior enhances disruption.

Taken to extreme, a collision-vaporization model of the Earth-Moon system has been recently revived with vigor and substance (14,15). Although preliminary calculations have been made to describe the impact-induced vaporization of the early terrestrial crust and the transfer of angular momentum (16), such models are limited by necessary simplifying assumptions including $1-D$ and $2-$ descriptions of a $3-D$ event. It is unlikely (albeit fortunate) that a directly scaled event will occur. A space station platform, however, provides a unique opportunity to test important facets of such models by allowing freely suspended spherical targets of varying viscosities, internal density gradients, and spin rates. Although a centralized gravity term cannot be introduced or completely simulated, such limitations are far outweighed by variables that can be readily introduced and controlled.

References: 1) McAdoo, D.C. and Burns, J.A. (1973) Icarus 18, 285-293. 2) Burns, J.A. and Tedesco, E.F. (1979), in Asteroids (T. Gehrels, ed.) 494-527. 3) Davis, D.R., Chapman, C.R., Greenberg, R., and Weidenschilling, S.J. (1979), in Asteroids (T. Gehrels, ed.) 528-557. 4) Harris, A.W. (1979) Icarus 40, 145-153. 5) Harris, A.W. (1977) Icarus 40, 168-174. 6) Hartmann, W.K. (1979), in Asteroids (T. Gehrels, ed.), 466-479. 7) Hartmann, W.K. and Davis, D.R. (1975), in Icarus 24, 504-515. 8) Cameron, A. and Ward, W. (1978) Lunar Planet. Sci. IX, 1205-1207. 9) Schultz, P.H. and Gault, D.E. (1975) The Moon, 12, 159-177. 10) Hughes, G.H., App, F.N., McGetchin, T.R. (1977) Phys. Earth Planet. Inst, 15, 251-263. 11) Gault, D.E. and Wedekind, J.A. (1978) Proc. Lunar Planet. Sci. Conf. 9th, 3843-3875. 12) Schultz, P.H. and Gault, D.E. (1985) Lunar and Planet. Sci. XVI, 740-741. 13) Whipple, F. (1982), in Comets (L. Wilkening, ed.), 227-250. 14) Stevenson, D.J. (1984), Conference on the Origin of the Moon, 60. 15) Hartmann, W.K. (1984), Conference on the Origin of the Moon, 52. 16) Melosh, H.J. (1985) Lunar Planet. Sci. XVI, 552-553.

