1,779 research outputs found
White-Collar Crime in Brazil: Legislation, Court Decisions, and the Opinion of Legal Writers
Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures
Understanding how intercalation materials change during electrochemical operation is paramount to optimizing their behaviour and function and in situ characterization methods allow us to observe these changes without sample destruction. Here we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave-assisted route which exhibits a larger electrochemical capacity (232 mAh g-1) compared with VO2 (B) prepared by a solvothermal route (197 mAh g-1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation
Characterizing the variation of propagation constants in multicore fibre
We demonstrate a numerical technique that can evaluate the core-to-core
variations in propagation constant in multicore fibre. Using a Markov Chain
Monte Carlo process, we replicate the interference patterns of light that has
coupled between the cores during propagation. We describe the algorithm and
verify its operation by successfully reconstructing target propagation
constants in a fictional fibre. Then we carry out a reconstruction of the
propagation constants in a real fibre containing 37 single-mode cores. We find
that the range of fractional propagation constant variation across the cores is
approximately .Comment: 17 pages; preprint format; 5 figures. Submitted to Optics Expres
Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy
Lithium-stuffed garnets attract huge attention due to their outstanding potential as solid-state electrolytes for lithium batteries. However, there exists a persistent challenge in the reliable synthesis of these complex functional oxides together with a lack of complete understanding of the lithium-ion diffusion mechanisms in these important materials. Addressing these issues is critical to realizing the application of garnet materials as electrolytes in all solid-state lithium-ion batteries. In this work, a cubic phase garnet of nominal composition Li6.5Al0.25La2.92Zr2O12 is synthesized through a microwave-assisted solid-state route for the first time, reducing considerably the reaction times and heating temperatures. Lithium-ion diffusion behavior is investigated by electrochemical impedance spectroscopy (EIS) and state-of-art muon spin relaxation (mSR) spectroscopy, displaying activation energies of 0.55 0.03 eV and 0.19 0.01 eV respectively. This difference arises from the high inter-grain resistance, which contributes to the total resistance in EIS measurements. In contrast, mSR acts as a local probe providing insights on the order of the lattice, giving an estimated value of 4.6210􀀀11 cm2s􀀀1 for the lithium diffusion coefficient. These results demonstrate the potential of this lithium-stuffed garnet as a solid-state electrolyte for all-solid state lithium-ion batteries, an area of growing interest in the energy storage community
Tree Demography Plots
The pantropical network of large tree demography plots coordinated by the Smithsonian’s Center for Tropical Forest Science has now gone global, as part of the Smithsonian Institution Global Earth Observatories. Some four million tropical trees, representing about 10,000 species, are now tagged, provisionally identified and periodically recensused. Some 3,000 species are captured in the six plots within Malesia. These include species rarely collected and many that are now endangered. Easy location of trees for periodic examination for fertile material and detailed ecological data, together with seasoned in-country research teams, provide unique opportunities for research collaboration
Evaluating techniques for metagenome annotation using simulated sequence data
The advent of next-generation sequencing has allowed huge amounts of DNA sequence data to be produced, advancing the capabilities of microbial ecosystem studies. The current challenge is identifying from which microorganisms and genes the DNA originated. Several tools and databases are available for annotating DNA sequences. The tools, databases and parameters used can have a significant impact on the results: naïve choice of these factors can result in a false representation of community composition and function. We use a simulated metagenome to show how different parameters affect annotation accuracy by evaluating the sequence annotation performances of MEGAN, MG-RAST, One Codex and Megablast. This simulated metagenome allowed the recovery of known organism and function abundances to be quantitatively evaluated, which is not possible for environmental metagenomes. The performance of each program and database varied, e.g. One Codex correctly annotated many sequences at the genus level, whereas MG-RAST RefSeq produced many false positive annotations. This effect decreased as the taxonomic level investigated increased. Selecting more stringent parameters decreases the annotation sensitivity, but increases precision. Ultimately, there is a trade-off between taxonomic resolution and annotation accuracy. These results should be considered when annotating metagenomes and interpreting results from previous studies
Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer.
Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion
Follistatin, a Novel Biomarker for Malignant Gliomas
Molecular biomarkers are commonly used for the management of several types of malignant tumours in routine clinical practice. However, this is not the case for malignant gliomas. Cytokines and Angiogenesis factors are potential candidates due to their intrinsic role in tumourigenesis. Pre- and post-operative serum from 36 malignant glioma patients and 36 controls was analysed using the Bio-Plex Pro Angiogenesis and Cytokines Assay (Bio-Rad, USA). Amongst the molecules tested, the serum concentration of follistatin was significantly higher in patients than in controls. Moreover, the serum concentration of follistatin of the patients postoperatively was significantly reduced compared to that preoperatively. Factors such as age and gender did not affect the concentrations of follistatin measured in the serum of patients pre- and post-operatively as well as healthy controls. This is the first report of follistatin as potential biomarker for the detection of malignant gliomas
- …
