163 research outputs found

    The Evolution and Diversity of DNA Transposons in the Genome of the Lizard Anolis carolinensis

    Get PDF
    DNA transposons have considerably affected the size and structure of eukaryotic genomes and have been an important source of evolutionary novelties. In vertebrates, DNA transposons are discontinuously distributed due to the frequent extinction and recolonization of these genomes by active elements. We performed a detailed analysis of the DNA transposons in the genome of the lizard Anolis carolinensis, the first non-avian reptile to have its genome sequenced. Elements belonging to six of the previously recognized superfamilies of elements (hAT, Tc1/Mariner, Helitron, PIF/Harbinger, Polinton/Maverick, and Chapaev) were identified. However, only four (hAT, Tc1/Mariner, Helitron, and Chapaev) of these superfamilies have successfully amplified in the anole genome, producing 67 distinct families. The majority (57/67) are nonautonomous and demonstrate an extraordinary diversity of structure, resulting from frequent interelement recombination and incorporation of extraneous DNA sequences. The age distribution of transposon families differs among superfamilies and reveals different dynamics of amplification. Chapaev is the only superfamily to be extinct and is represented only by old copies. The hAT, Tc1/Mariner, and Helitron superfamilies show different pattern of amplification, yet they are predominantly represented by young families, whereas divergent families are exceedingly rare. Although it is likely that some elements, in particular long ones, are subjected to purifying selection and do not reach fixation, the majority of families are neutral and accumulate in the anole genome in large numbers. We propose that the scarcity of old copies in the anole genome results from the rapid decay of elements, caused by a high rate of DNA loss

    Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    Get PDF
    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group

    Evolutionary dynamics of rhomboid proteases in Streptomycetes

    Full text link
    Background Proteolytic enzymes are ubiquitous and active in a myriad of biochemical pathways. One type, the rhomboids are intramembrane serine proteases that release their products extracellularly. These proteases are present in all forms of life and their function is not fully understood, although some evidence suggests they participate in cell signaling. Streptomycetes are prolific soil bacteria with diverse physiological and metabolic properties that respond to signals from other cells and from the environment. In the present study, we investigate the evolutionary dynamics of rhomboids in Streptomycetes, as this can shed light into the possible involvement of rhomboids in the complex lifestyles of these bacteria. Results Analysis of Streptomyces genomes revealed that they harbor up to five divergent putative rhomboid genes (arbitrarily labeled families A–E), two of which are orthologous to rhomboids previously described in Mycobacteria. Characterization of each of these rhomboid families reveals that each group is distinctive, and has its own evolutionary history. Two of the Streptomyces rhomboid families are highly conserved across all analyzed genomes suggesting they are essential. At least one family has been horizontally transferred, while others have been lost in several genomes. Additionally, the transcription of the four rhomboid genes identified in Streptomyces coelicolor, the model organism of this genus, was verified by reverse transcription. Conclusions Using phylogenetic and genomic analysis, this study demonstrates the existence of five distinct families of rhomboid genes in Streptomycetes. Families A and D are present in all nine species analyzed indicating a potentially important role for these genes. The four rhomboids present in S. coelicolor are transcribed suggesting they could participate in cellular metabolism. Future studies are needed to provide insight into the involvement of rhomboids in Streptomyces physiology. We are currently constructing knock out (KO) mutants for each of the rhomboid genes from S. coelicolor and will compare the phenotypes of the KOs to the wild type strain

    Diffuse-interface model for rapid phase transformations in nonequilibrium systems

    Get PDF
    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe the transformation within the diffuse interface, we use the phase-field model which allows us to follow the steep but smooth change of phases within the width of diffuse interface. The governing equations of the phase-field model are derived for the hyperbolic model, model with memory, and for a model of nonlinear evolution of transformation within the diffuse-interface. The consistency of the model is proved by the condition of positive entropy production and by the outcomes of the fluctuation-dissipation theorem. A comparison with the existing sharp-interface and diffuse-interface versions of the model is given.Comment: 15 pages, regular article submitted to Physical Review

    Analysis of SEC9 Suppression Reveals a Relationship of SNARE Function to Cell Physiology

    Get PDF
    BACKGROUND:Growth and division of Saccharomyces cerevisiae is dependent on the action of SNARE proteins that are required for membrane fusion. SNAREs are regulated, through a poorly understood mechanism, to ensure membrane fusion at the correct time and place within a cell. Although fusion of secretory vesicles with the plasma membrane is important for yeast cell growth, the relationship between exocytic SNAREs and cell physiology has not been established. METHODOLOGY/PRINCIPAL FINDINGS:Using genetic analysis, we identified several influences on the function of exocytic SNAREs. Genetic disruption of the V-ATPase, but not vacuolar proteolysis, can suppress two different temperature-sensitive mutations in SEC9. Suppression is unlikely due to increased SNARE complex formation because increasing SNARE complex formation, through overexpression of SRO7, does not result in suppression. We also observed suppression of sec9 mutations by growth on alkaline media or on a non-fermentable carbon source, conditions associated with a reduced growth rate of wild-type cells and decreased SNARE complex formation. CONCLUSIONS/SIGNIFICANCE:Three main conclusions arise from our results. First, there is a genetic interaction between SEC9 and the V-ATPase, although it is unlikely that this interaction has functional significance with respect to membrane fusion or SNAREs. Second, Sro7p acts to promote SNARE complex formation. Finally, Sec9p function and SNARE complex formation are tightly coupled to the physiological state of the cell

    The genome of the green anole lizard and a comparative analysis with birds and mammals

    Full text link
    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments1. Among amniotes, genome sequences are available for mammals2 and birds3–5, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes3. Also, A. carolinensis mobile elements are very young and diverse – more so than in any other sequenced amniote genome. This lizard genome’s GC content is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds6. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations

    The genome of the green anole lizard and a comparative analysis with birds and mammals

    Get PDF
    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse—more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.National Science Foundation (U.S.) (NSF grant DEB-0920892)National Science Foundation (U.S.) (NSF grant DEB-0844624)National Human Genome Research Institute (U.S.

    Marjolin's ulcers at a university teaching hospital in Northwestern Tanzania: a retrospective review of 56 cases

    Get PDF
    Marjolin's ulcer is a rare but highly aggressive squamous cell cancer that is most often associated with chronic burn wounds. Although many individual case reports exist, no comprehensive evaluation of Marjolin's ulcer patients has been conducted in our setting. This study was conducted to describe the clinicopathological presentation and treatment outcome of this condition in our local setting and to identify predictors of outcome. This was a retrospective study of histologically confirmed cases of Marjolin's ulcer seen at Bugando Medical Centre over a period of 10-years between January 2001 and December 2010. Data were retrieved from patients' files and analyzed using SPSS computer software version 15.0 A total of 56 patients were studied. Male to female ratio was 2.1:1. Burn scars (89.3%) were the most common causative lesions of Marjolin's ulcer. The mean latent period between original injury and diagnosis of Marjolin's ulcer was 11.34 ± 6.14 years. Only 12.0% of the reported cases were grafted at the time of injury (P < 0.00). Most patients (48.2%) presented between one and five years of onset of illness. The lower limb (42.9%) was the most frequent site for Marjolin's ulcers. The median tumor size at presentation was 8 cm and the vast majority of patients (85.7%) presented with large tumors of ≥ 5 cm in diameter. Lymph node metastasis at the time of diagnosis was recorded in 32.1% of cases and distant metastasis accounted for 26.9% of cases. Squamous cell carcinoma (91.1%) was the most common histopathological type. Wide local excision was the most common surgical procedure performed in 80.8% of cases. Post-operative complication rate was 32.1% of which surgical site infection was the most common complication in 38.9% of patients. Local recurrence was noted in 33.3% of cases who were treated surgically. The mean length of hospital stay for in-patients was 7.9 ± 2.3 days. Mortality rate was 7.1%. According to multivariate logistic regression analysis, stage and grade of the tumor and presence of local recurrence were the main predictors of death (P < 0.001). Marjolin's ulcers are not rare in our environment and commonly occur in burn scars that were not skin grafted and were left to heal secondarily. A high index of suspicion is required in the management of chronic non-healing ulcers and all suspected lesions should be biopsed. Early recognition and aggressive treatment of Marjolin's ulcers and close follow-up are urgently needed to improve outcomes in our environment

    Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.

    Get PDF
    Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation
    corecore