109 research outputs found

    An evaluation of genotyping by sequencing (GBS) to map the <em>Breviaristatum-e (ari-e)</em> locus in cultivated barley

    Get PDF
    ABSTRACT: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. ‘Golden Promise’ that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis

    Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    Get PDF
    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants

    Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus Alternaria solani.

    Get PDF
    Background In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar. Results Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets. Conclusions In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families

    Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Get PDF
    The authors thank the Education Spanish Ministry for the grant provided for the first author under the "Ayudas para la movilidad postdoctoral en centros extranjeros'' scheme. The James Hutton Institute receives funding from the Scottish Government.Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).Publisher PDFPeer reviewe

    The low recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    Get PDF
    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes

    Phytophthora austrocedri in Argentina and co-Inhabiting phytophthoras: roles of anthropogenic and abiotic factors in species distribution and diversity

    Get PDF
    This work reports the first survey of Phytophthora diversity in the forests soils of Andean Patagonia. It also discusses the role of anthropogenic impact on Phytophthora distribution inferred from the findings on Phytophthora diversity and on the distribution of Phytophthora austrocedri-diseased forests. Invasive pathogen species threatening ecosystems and human activities contribute to their entry and spread. Information on pathogens already established, and early detection of potential invasive ones, are crucial to disease management and prevention. Phytophthora austrocedri causes the most damaging forest disease in Patagonia, affecting the endemic species Austrocedrus chilensis (D. Don) Pic. Sern. and Bizzarri. However, the relationship between anthropogenic impacts and the disease distribution has not been analyzed enough. The aims of this work were: to evaluate Phytophthora diversity in soils of Andean Patagonia using a metabarcoding method, and analyze this information in relation to soil type and land use; to assess the distribution of Austrocedrus disease over time in relation to anthropogenic and abiotic gradients in an area of interest; and to discuss the role of human activities in Phytophthora spread. High throughput Illumina sequencing was used to detect Phytophthora DNA in soil samples. The distribution of Austrocedrus disease over time was assessed by satellite imagery interpretation. Twenty-three Phytophthora species, 12 of which were new records for Argentina, were detected. The most abundant species was P. austrocedri, followed by P. × cambivora, P. ramorum and P. kernoviae. The most frequent was P. × cambivora, followed by P. austrocedri and P. ramorum. Phytophthora richness and abundance, and Austrocedrus disease distribution, were influenced by land use, anthropogenic impact and soil drainage. Results showed several Phytophthoras, including well-known pathogenic species. The threat they could present to Patagonian ecosystems and their relations to human activities are discussed. This study evidenced the need of management measures to control the spread of P. austrocedri and other invasive Phytophthora species in Patagonia.EEA EsquelFil: Vélez, María Laura. Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP); ArgentinaFil: Vélez, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vélez, María Laura. Universidad Nacional de la Patagonia San Juan Bosco; ArgentinaFil: La Manna, Ludmila. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; ArgentinaFil: La Manna, Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarabini, Manuela. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; ArgentinaFil: Tarabini, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gómez, Federico Antonio. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; ArgentinaFil: Gómez, Federico Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gómez, Federico Antonio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agroforestal Esquel; ArgentinaFil: Elliott, Matt. Forest Research; EscociaFil: Hedley, Pete. Instituto James Hutton, Cell and Molecular Sciences; Reino UnidoFil: Cock, Peter. Instituto James Hutton, Information and Computational Sciences; Reino UnidoFil: Greslebin, Alina. Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Greslebin, Alina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Greslebin, Alina. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ciencias Naturales y Ciencias de la Salud; Argentin
    corecore