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Highlights
Growers need to produce increased
crop yield to use resources more effec-
tively and be resilient to abiotic stress
and changing climates; however, current
approaches are leading to maladapta-
tion to stress.

Bottlenecks in the selection of barley
varieties have resulted in a reduction
of genetic diversity that is obstructive
to climate-smart agriculture.
Future crops need to be sustainable in the face of climate change. Modern barley
varieties have been bred for high productivity and quality; however, they have
suffered considerable genetic erosion, losing crucial genetic diversity. This renders
modern cultivars vulnerable to climate change and stressful environments. We
highlight the potential to tailor crops to a specific environment by utilising diversity
inherent in an adapted landrace population. Tapping into natural biodiversity, while
incorporating information about local environmental and climatic conditions,
allows targeting of key traits and genotypes, enabling crop production in marginal
soils.Weoutline future directions for the utilisation of genetic resourcesmaintained
in landrace collections to support sustainable agriculture through germplasm
development via the use of genomics technologies and big data.
To reverse genetic erosion and iden-
tify novel sources of variation, we are
re-examining and reintroducing crop
landraces.

Landscape genomics can add a new di-
mension by modelling potential adaptive
responses to a specific environment or
global climate change.

In a conceptual model, we outline
a targeted breeding programme
connecting old cultivar collections with
state-of-the-art gene discovery and
phenotyping, necessary to provide
new resources for future needs.
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Reintroduction of genetic diversity
Agriculture faces a triple challenge of increasing food security with progressively marginal soil
conditions in the face of climate change, while also reducing its impact on the environment.
Maximising grain yield remains the main breeding target for all cereal crops; however, there
needs to be a transition to breeding crops for sustainability as current approaches are showing
maladaptation to stress [1], including late-season heat and early-season frost, variability in
water availability, nutrient deficiency, salinity, and toxic elements found in some marginal soils
[2]. This is exacerbated by genetic erosion (see Glossary) seen through domestication per se
[3] and the subsequent breeding process in many species, including barley [4]. Barley is currently
the fourth-most-widely cultivated cereal and constitutes one of the major sources of global feed,
food, and malt. Breeding to maintain levels of production across soils with contrasting fertility and
in marginal environments is therefore critical. Making the most of our soils and implementing
farming systems with reduced inputs is key to environmental sustainability, emphasising the
need to exploit better-adapted and more resilient varieties of our major crops.

Barley has a very broad ecogeographic range compared with most other crop species [5] and
has therefore evolved tolerance to a wide variety of environmental conditions. For millennia,
natural and farmer-driven selection during cultivation under adverse environmental conditions
has resulted in the emergence of varied adaptive traits. The resulting architecture of genotypes
provides a promising solution to secure future crop stability [5,6]. Numerous wild and cultivated
barley accessions have been collected and conserved in gene banks [7–9], which await geo-
graphic, phenotypic, and molecular characterisation. Collections of landraces are therefore an
important source of germplasm, genes, and traits to improve the sustainability of agriculture in
the face of climate change and other environmental perturbations [10–12], while also having
value in the assessment of the impacts of climate, migration, and trade in agrarian history
[13,14]. Collectively, this can be used to infer and predict which landraces, wild relatives, and
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Glossary
Chlorophyll (Chl) a fluorescence
analysis: a highly sensitive methodology
that provides a non-destructive tool for
measuring various key parameters related
to photosynthetic efficiency.
Clustered regularly interspaced
short palindromic repeats
(CRISPR)/CRISPR associated
(Cas): CRISPR guide editing by Cas
enzymes, one of a number of
genome-editing tools.
De novo domestication:
domestication is defined as the process
whereby wild plants have been evolved
into crop plants through human
selection. De novo domestication
maintains desirable traits, such as
environmental adaptability, of the wild
plants to enhance production in crop
plants, using marker-based or
gene-editing approaches.
Genetic erosion: loss of variation that
may occur at the level of crop, cultivar, or
allele. Reduction in allelic evenness and
richness is the greatest concern in the
agriculture of today.
Genome–environment association
(GEA) and environmental genome-
wide association analysis
(envGWAS): associations between
SNPs and the environments from which
the landraces were collected to uncover
the genetic basis of environmental
adaptation.
Genome-wide association studies
(GWASs): statistical associations
between genetic markers and a trait of
interest using a collection of diverse,
unrelated accessions based on linkage
disequilibrium.
Genomic selection: a statistical
prediction of marker effects based on
genotypic and phenotypic information
from a calibration population used to
train a prediction model.
Haplotype: a group of alleles in a
cluster of tightly linked genes on a
chromosome that are likely to be
inherited together.
Landraces: genotypes of traditionally
domesticated crops that are locally
adapted, selected from diverse
environments, and maintained by
farmers over generations.
Manganese (Mn) deficiency:
symptoms in barley initially develop as
interveinal chlorosis in younger leaves
and eventually also as necrotic brown
spots on older leaves, reflecting the
indispensable function of Mn in
photosynthesis.
progenitor species have the ability to yield under specific environmental constraints and act as
donors of useful genes and traits to current elite varieties [15–17]. One example of this approach is
genome–environment association (GEA) [18], or environmental genome-wide association
analysis (envGWAS), which is gaining popularity and has been used to assess barley and wheat
for adaptative traits [19]. Specifically, genes involved in frost tolerance in barley have been found
through allele mining of exome sequencing data from a population of landrace cultivars [20]. For
this reason, locally selected landraces have received renewed interest across all crops [11].

Landraces have previously been recognised as an important genetic resource to reveal adapta-
tion to traits such as high soil boron in wheat [21], aluminium tolerance in barley [22],manganese
(Mn) deficiency in barley [23], and phosphorus efficiency in rice [24]. However, the potential of
landrace collections has not been fully harnessed in modern plant breeding [6,25–28]. Exploiting
the genetic control that has evolved through adaptation to distinct geographical zones will help in
planning more effective breeding strategies for crop production in marginal environments and in
reintroducing beneficial traits.

We argue that there is substantial and novel genetic diversity present in landraces awaiting to be
unlocked and suggest strategies for targeting and utilising this diversity more efficiently and effec-
tively. These perspectives are included in a conceptual model for predicting gene combinations
by the integration of highly descriptive agronomic and genomic data to guide germplasm
utilisation in future crop breeding.

Adaptive traits of barley landraces in marginal environments
The impacts of reduced diversity in modern breeding are becoming more evident [29] and are
here exemplified in a case study characterising phenotypic and genetic variation. We examined
both modern cultivars and locally adapted ancient genotypes of barley grown in alkaline marginal
soils with inherent limitation of plant-available Mn [23]. Mn deficiency in barley and other staple
crops is a worldwide problem [30,31] affecting large areas of southern Australia, Texas, regions
of China, and northern Europe, including Scandinavia and the UK [23,32–38]. Soils particularly
prone to Mn deficiency include calcareous, alkaline, and sandy soils with high porosity, where
Mn is primarily present as oxides, which cannot be utilised by plants.

Under such conditions, the performance of a range of spring barley cultivars and landraces,
representing the breeding history of barley in the UK and Northern Europe, was evaluated [23]
(Box 1) and genotypes screened for their ability to perform optimal photosynthesis for biomass
production (see Figure IA in Box 1) [39]. Chlorophyll (Chl) a fluorescence analysis was
used to derive the quantum yield (Fv/Fm) of photosystem II (PSII), which is a proxy for plant Mn
status [30,39]. Remarkable differences in Fv/Fm among the barley varieties were observed (see
Figure IA in Box 1) [23], with values ranging from 0.30 (severe Mn deficiency) to 0.76 (mild Mn de-
ficiency). The two Bere landraces, collected from Shetland and Orkney, had superior PSII effi-
ciency (Fv/Fm of 0.75 and 0.76). By contrast, all other barley accessions, including recently
recommended UK and Scandinavian varieties and other Scottish landraces, had Fv/Fm values
≤0.40, indicating severe Mn deficiency [40]. The poor PSII efficiency of the UK elite varieties strug-
gling with Mn deficiency was fatal, causing total crop loss as they failed to set seed. By contrast,
the two Bere landraces produced a grain yield of 2.7 t ha−1, demonstrating local adaptation to
marginal soil conditions (see Figure IB in Box 1). This is a striking illustration of how locally adapted
landraces can generate reasonable yields in challenging soils. The ability to produce grain on al-
kaline soils with low Mn availability has been enhanced in some Bere landraces by years of selec-
tion and adaptation but lost in elites, with no advantage in having the trait on fertile soils. Most
beneficial adaptive phenotypic traits are considered to be controlled by multiple polymorphic
Trends in Plant Science, May 2023, Vol. 28, No. 5 545
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Marker-assisted selection:
identification and use of genetic markers
associated with desirable traits.
Multiparent advanced generation
intercross (MAGIC) populations: the
use of multiple parents, where parents
have been intercrossed to generate a
genetic resource with increased
recombination and variation for
high-resolution QTL mapping.
Multiple derivative lines (MDLs): a
combination ofMAGIC,multiple parents,
and NAM, a single common parent,
crossed and backcrossed to develop a
diverse population.
Nested association mapping (NAM)
populations: using a single common
parent crossed to a diverse set of lines to
create biparental populations,
backcrossed or single-seed-descent
populations, analysed together to
improve the resolution of QTL mapping.
Polymorphic genes: a gene is
described as polymorphic where the
presence of two ormore variant forms of
a specific DNA sequence occur among
different individuals or populations.
Quantitative trait locus (QTL): a
region of the genome associated with a
particular trait; can be genetically or
physically defined as an interval on a
chromosome where the candidate gene
for the trait lies.
Single-nucleotide polymorphism
(SNP): a position in the genome with a
variable nucleotide.
genes [41], which is also likely for Mn efficiency observed in the responsive Bere landraces [23].
Genetically, these Bere landraces are distinct from modern and other old cultivars and landraces
[23] (see Figure IC in Box 1). Furthermore, within the Bere landrace group specific distinct
geographical patterns can be observed, suggesting that they have developed independent
equivalent strategies to cope with Mn deficiency [23]. This case study provides an exemplar of
how locally adapted landraces can harbour genetic information that has been lost from the elite
breeding gene pool but is critical for production on certain marginal soils.

Development of an improved and more resilient germplasm pool
The key challenge is how to translate and deploy these abilities from landraces into elite varieties
to enhance yield in marginal soils, which are becoming more common in conventional and
organic cropping systems. Landrace collections could enable farmers to select from and use a
modern participatory breeding approach to identify the correct variety for specific locations and
for specific value chains, including food, feed, or high-valuemalting and distilling uses. This ‘modern
landrace concept’, along with future perspectives on using landrace material to generate plants
adapted to climate change, is illustrated in a conceptual model (Figure 1, Key figure).

Genotypes with desirable traits selected for optimal performance in marginal soils and diverse
environments are urgently required [42]. Landraces may be exploited directly as a source of
genetic diversity for the development of new varieties expressing desirable traits that are adapted
to specific agroecological zones (Figure 1). A complementary option termed ‘survivalomics’ is
useful to identify parental material for introgression of abiotic stress tolerance based on the ability
to yield in extreme habitats [43]. The positive alleles contributed by surviving landraces could be
directly used in breeding to improve elite cultivars [44]. However, a major drawback of the direct
use of landraces or wild relatives is their undesirable traits, such as excessive height in barley [45],
which under high-input conditions induces lodging. By comparison, shorter modern elite cultivars
have optimum performance under high nitrogen levels. Many of these issues can be overcome by
using the correct sampling and statistical approaches to identify the beneficial alleles [46]. Another
potential problem is accession heterogeneity and the potential mix of genotypes found in
landrace populations, but this can be circumvented by the production of pure-line populations
from single-seed descent [9].

The use of landraces as part of diverse panel populations for genome-wide association studies
(GWASs) has enabled the identification of quantitative trait loci (QTLs) for a number of biotic
and abiotic stress tolerance traits [47–49] and important physiological and development traits
[50]. Similarly, multiple parent populations, such as nested association mapping (NAM)
populations, multiparent advanced generation intercross (MAGIC) populations, and
multiple derivative lines (MDLs), which include landraces and wild relatives as parental donors,
are yielding important diversity in phenotypes, which could improve sustainability of elite germ-
plasm [51]. Identifying and transferring knowledge of new targets to the plant breeding community
is essential to generate novel robust and high-yielding genotypes. Bi- and multiparent populations
can be selected for desired traits in a target background by predicting genetic permutations that
combine targeted traits (e.g., optimal flowering time and tolerance towards water and nutrient
deficiency) (Figure 1; [48]). Knowledge and understanding of traits will assist in the identification
of suitable parental lines for population development and sustainable (low inputs, stable yield in a
variable climate) breeding programs [52], as will the combination of genomic selection and
crop modelling, which has been used to ascertain environmental cues for flowering time in rice,
for example [53]. The future breeding process will therefore benefit from advances in genome-
enabled parental selection, identifying haplotypes and screening the progeny of crosses for
desired recombinants whose performance can be predicted based on genetic information
546 Trends in Plant Science, May 2023, Vol. 28, No. 5

CellPress logo


Box 1. Visual illustration of contrasting response between barley landraces and modern cultivars to Mn deficiency

To demonstrate the superior performance of Beres on soils with low Mn availability in Orkney, a small field trial comparing commercially available recommended elite
varieties with Bere and other local landraces was undertaken (Figure I). The lines were screened visually throughout the growing season as well as being scored for
photosynthetic ability and grain yield at harvest [23].
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Figure I. An overview of manganese response in the field and genetic diversity of a subset of Bere landraces and elite cultivars.
(A) Field trial plots showing plant vigour and biomass production for 20 genotypes, including two Bere landrace lines (Unst Shetland and North Ronaldsay) (see materials
and methods in the supplemental information online). Cultivars were recommended in the UK between 2009 and 2019 from major European breeding companies: RGT
Seeds (RGT Planet and RGT Asteroid); KWS UK (KWS Sassy and KWS Irina); Limagrain Europe SA and UK (LG Tomahawk, Concerto, Olympus; LG Diablo, Ovation, and
Sienna); Syngenta Participations AG (Fairing, Laureate, Propino, and Scholar); Sejet, Denmark (Cosmopolitan); and Saaten Union UK (Chanson). Chanson and Scholar are
feed varieties and the other cultivars are recommended for the malting industry. Scotch Common is an old two-row landrace grown throughout Scotland during the 1900s
andGraminorRødhette is amodern six-row cultivar fromNorway. The soil type is a calcareous sandy loam, pH 7.8with a lowmanganese (Mn) content of 1.7mg l−1. Numbers
in each plot are the average Fv/Fm value measured in the youngest fully emerged leaf of the plants (n = 3), indicating plant tolerance toMn deficiency (Fv/Fm< 0.5 = severe Mn
deficiency). (B) Grain yield [t ha−1; mean ± SE (n = 3)] for genotypes able to set seed. Control plots of the same genotypes were sown at the Agronomy Institute on Orkney,
where we observed yields of 4.50–6.74 t ha−1 for elite cultivars, 4.52–5.08 t ha−1 for the Bere barleys, and 3.29 t ha−1 for Scotch Common. (C) Neighbour-joining tree based on
a similarity matrix prepared for the barley genotypes using the 50K SNP genotyping chip [78].

Trends in Plant Science
[6,54], playing a central role in securing food and feed production [55]. Elite barley cultivars lack
haplotypic diversity at centromeric regions because of limited recombination, whereas landraces
and wild relatives offer a source of alternative untapped haplotypes [56–58].
Trends in Plant Science, May 2023, Vol. 28, No. 5 547
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Key figure

Using plant genetic resources to develop new varieties with desirable traits

Genetic resources
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Figure 1. The barley genetic resources comprise landraces and modern elite genotypes. From this genetically diverse material, new germplasm can be developed or
identified; that is, ready-to-go landraces can be selected, introgression breeding can be applied, or new germplasm can be developed from bi- or multiparental
crossing schemes to move genes from landraces into elite lines and vice versa. Genomic technologies, available to assess and select from the different types of
germplasm developed, include marker-assisted selection and genomic selection. In addition, the landrace source of genetic diversity may be used as inspiration when
designing custom genetic modifications by the use of genome-editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR
associated (Cas) systems to increase the precision with which new varieties can be created. We can search for traits that allow cultivation in extreme environments
by linking trait information with environmental and soil data through environmental genome-wide association analysis (EnvGWAS). Phenotyping is still necessary to
verify that the desired phenotype is achieved and may be facilitated by high-throughput/automated systems and by accelerating the breeding cycle (e.g., by the use of
optimum light intensity, temperature, and daylength to increase the rate of photosynthesis and thus plant growth). Together, such strategies will lead to the
development of an improved and more robust germplasm pool, which will yield more efficiently and sustainably in marginal environments. Illustration by Debbie Maizels,
Zoobotanica Scientific Illustration.

Trends in Plant Science
Towards an environmental genomics approach
The availability of historical environmental data at specific georeferenced locations, along with
predicted trends, will help to determine the role of climatic variables that have moulded the
adaptation of landraces to different environments. It is now possible to systematically explore
the genetic variation in local landraces in the context of climate maps to explore the drivers of
natural selection for local adaptation [59]. Combining large-scale genomic, phenomic, and eco-
logical data offers a framework to enhance our understanding of both the mechanistic basis
and the evolutionary consequences underlying adaptation in landraces and wild relatives of a
548 Trends in Plant Science, May 2023, Vol. 28, No. 5
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Outstanding questions
Which adaptive traits have the greatest
impact on crop resilience in future
climates?

How is loss of genetic diversity related to
the intensity of the selection process,
and is the information beneficial in
helping to plan more sustainable and
targeted breeding options?

How do we decipher highly descriptive
genomic data to guide and improve
landrace germplasm utilisation in crop
breeding?

How specific will the target breeding
environment need to be to enable
tolerance of crops to future
environments, or will it be possible
to breed a ‘stress-free’ cultivar that
copes under many conditions?

How do we improve landscape
measurements and facilitate the
integration of data sources from,
particularly, environmental science?

Will pseudo-redomestication from a
landrace background be an effective
way to improve sustainability in crops?
range of crop species [60–62]. The use of geographic and agroecological information and past
and future climate-predictive modelling, along with crop simulation and trait-based ensemble
modelling, can focus the search for stress tolerance genes and provide support for environmental
ideotype breeding [43,63–65]. In addition, landscape genomics (i.e., the combination of geogra-
phically available information on sampling points to compute ecophysiological indices, and
genomics) has been productive in identifying signatures of selection [44,66,67]. For example, a
detailed analysis of known flowering-associated genes has shown significant geographical struc-
turing [68]. Optimised flowering time, specific for geographical regions, is crucial to allow plants to
benefit from rainfall at early stages of development or avoid extreme weather late in the season
[69], allowing not only better grain-filling conditions for maximum productivity but also crop
resilience to extreme stress, providing greater opportunity to yield under such conditions. Positive
alleles contributed by elite genotypes indicate genomic regions of landraces that could be
targeted by pre-breeding programs to improve suboptimal landrace features [44]. New combina-
tions of genes for adaptation to marginal soils would increase the diversity of the cultivated crop
and deliver the biological resources required for such cultivation. Thus, a sensible strategy for
plant breeding would be to introgress beneficial optimised traits from elite lines into locally
adapted landrace germplasm or vice versa, to best match site-specific conditions [25]. Although
the former has worked well for single genes or additive traits, the latter has been proposed as an
approach for complex traits such as stress tolerance or components of yield and yield stability
[28]. By transferring critical domestication and adaptive traits (i.e. alleles of key known genes)
from elite germplasm into wild material, we can immediately produce germplasm that can be
effectively evaluated for valuable complex traits. Judicious selection of parents could lead to
candidate cultivars in a rapid manner [44]; for instance, Bere landraces and newly developed
lines with introgressions of the Bere genome will have physiological traits for superior accumulation
and utilisation of Mn (and other essential micronutrients) compared with elite varieties.

Established techniques, such as marker-assisted selection, marker-assisted backcrossing,
genomic selection, high-throughput phenotyping, and speed breeding can accelerate plant
breeding (Figure 1) [70–72]. The increasing availability of these methods and online informational
resources provides the potential to mine alleles in locally adapted landraces and to use this infor-
mation to generate improved crops. Improvements in DNA sequencing technologies have
enhanced the capacity to identify and manipulate genetic diversity and thereby the choice of
variation to be utilised (Figure 1). Even without mechanistic understanding, the identification of
SNP markers that are statistically associated with desirable traits, owing to their close physical
proximity in the genome and hence likelihood of being co-inherited, allows the prediction of
phenotype from genotype [73]. Novel genome-editing techniques have recently been developed
to facilitate accurate manipulation of target sequences [74], including clustered regularly
interspaced short palindromic repeats (CRISPR) technologies available for precise genetic
manipulation [72,75], and this could be applied to landrace and wild relatives in pseudo-
redomestication approaches [10,29,76,77]. Moreover, increased knowledge of metabolic
pathways resulting from genomic analyses will help in the design of new varieties with beneficial
traits with increased precision [73].

Concluding remarks and future perspectives
Agriculture is facing a major challenge to maintain and enhance food production on increasingly
marginal soils in the face of climate change while also reducing the impact on the wider environ-
ment. There exists a large amount of genetic and phenotypic diversity in landraces, wild relatives,
and progenitor species that could be harnessed to tackle some of these challenges. While exam-
ples of such diversity in landraces is ever increasing, the difficulties of transferring such abilities to
the elite germplasm remains (see Outstanding questions). However, by the judicious application
Trends in Plant Science, May 2023, Vol. 28, No. 5 549
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of cutting-edge genomic and genetics approaches, such as genome editing, genomic selection,
genome-enabling crossing schemes, and speed breeding, combined with information from crop,
environment, and genome modelling to landraces, it will be possible to accelerate this process
and overcome some of the bottlenecks.

We predict a future where gene pools of modern cultivars can be selectively expanded by
manually directed genetic introgression from landraces for improved tolerances to manage the
more intense stresses predicted with climate change.
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