628 research outputs found
Study of the combined effects of oxidation and adsorption process in removing MTBE from wastewater
Treatment of Methyl Tert-Butyl Ether (MTBE) from wastewater supplies presents specific challenges due to the physicochemical properties of MTBE which depend strongly on its hydrophilic nature, and translate into a high solubility in water. MTBE has very low Henry‘s constant and very low affinity for common adsorbents. An investigation was carried out for the treatability of metyl tert-butyl ether (MTBE) in synthetic wastewater. In this research, experimental rig and bench-scale studies using granular activated carbon (GAC) and hydrogen peroxide (H2O2) were conducted to observe the treatability of MTBE in synthetic wastewater. An experimental rig was built up that consist of three conjugated system. Subsequently, MTBE was amended to the H2O2 and air flow, followed by adsorption treatment with GAC. Generally, the major finding suggests that the longer cycle pulsation time (3 minutes open valve + 5 seconds closed valve) with air flow rate at 6 L/min over the synthetic wastewater caused a greater removal of MTBE. The result of this study can help to provide specific guidance into process parameter selection for treating MTBE in wastewaters. The optimum operating conditions are very important for treating the wastewater effectively in a larger scale
Bone Mineral Density in Patients with Ankylosing Spondylitis: Incidence and Correlation with Demographic and Clinical Variables
Objective: To evaluate bone mineral density (BMD) in patients with ankylosing spondylitis (AS) and determine its correlation with the demographic and clinical characteristics of AS. Patients and Methods: Demographic, clinical and osteodensitometric data were evaluated in a cross-sectional study that included 136 patients with AS. Spine and hip BMD were measured by means of dual energy X-ray absorptiometry (DXA). Using the modified Schober’s test we assessed spine mobility. We examined the sacroiliac, anteroposterior and lateral dorso-lumbar spine radiographs in order to grade sacroiliitis and assess syndesmophytes. Disease activity was evaluated using C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR). Demographic data and BMD measurements were compared with those of 167 age- and sex-matched healthy controls. Results: Patients with AS had a significantly lower BMD at the spine, femoral neck, trochanter and total hip as compared to age-matched controls (all p<0.01). According to the WHO classification, osteoporosis was present in 20.6% of the AS patients at the lumbar spine and in 14.6% at the femoral neck. There were no significant differences in BMD when comparing men and women with AS, except for trochanter BMD that was lower in female patients. No correlations were found between disease activity markers (ESR, CRP) and BMD. Femoral neck BMD was correlated with disease duration, Schober’s test and sacroiliitis grade. Conclusion: Patients with AS have a lower spine and hip BMD as compared to age- and sex-matched controls. Bone loss at the femoral neck is associated with disease duration and more severe AS
Recent Advances Concerning Certain Class of Geophysical Flows
This paper is devoted to reviewing several recent developments concerning
certain class of geophysical models, including the primitive equations (PEs) of
atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for
large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes
equations coupled to the heat convection by adopting the Boussinesq and
hydrostatic approximations, while the tropical atmosphere model considered here
is a nonlinear interaction system between the barotropic mode and the first
baroclinic mode of the tropical atmosphere with moisture.
We are mainly concerned with the global well-posedness of strong solutions to
these systems, with full or partial viscosity, as well as certain singular
perturbation small parameter limits related to these systems, including the
small aspect ratio limit from the Navier-Stokes equations to the PEs, and a
small relaxation-parameter in the tropical atmosphere model. These limits
provide a rigorous justification to the hydrostatic balance in the PEs, and to
the relaxation limit of the tropical atmosphere model, respectively. Some
conditional uniqueness of weak solutions, and the global well-posedness of weak
solutions with certain class of discontinuous initial data, to the PEs are also
presented.Comment: arXiv admin note: text overlap with arXiv:1507.0523
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise
The Primitive Equations are a basic model in the study of large scale Oceanic
and Atmospheric dynamics. These systems form the analytical core of the most
advanced General Circulation Models. For this reason and due to their
challenging nonlinear and anisotropic structure the Primitive Equations have
recently received considerable attention from the mathematical community.
In view of the complex multi-scale nature of the earth's climate system, many
uncertainties appear that should be accounted for in the basic dynamical models
of atmospheric and oceanic processes. In the climate community stochastic
methods have come into extensive use in this connection. For this reason there
has appeared a need to further develop the foundations of nonlinear stochastic
partial differential equations in connection with the Primitive Equations and
more generally.
In this work we study a stochastic version of the Primitive Equations. We
establish the global existence of strong, pathwise solutions for these
equations in dimension 3 for the case of a nonlinear multiplicative noise. The
proof makes use of anisotropic estimates, estimates on the
pressure and stopping time arguments.Comment: To appear in Nonlinearit
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
A distributed optimization method for the geographically distributed data centres problem
The geographically distributed data centres problem (GDDC) is a naturally distributed resource allocation problem. The problem involves allocating a set of virtual machines (VM) amongst the data centres (DC) in each time period of an operating horizon. The goal is to optimize the allocation of workload across a set of DCs such that the energy cost is minimized, while respecting limitations on data centre capacities, migrations of VMs, etc. In this paper, we propose a distributed optimization method for GDDC using the distributed constraint optimization (DCOP) framework. First, we develop a new model of the GDDC as a DCOP where each DC operator is represented by an agent. Secondly, since traditional DCOP approaches are unsuited to these types of large-scale problem with multiple variables per agent and global constraints, we introduce a novel semi-asynchronous distributed algorithm for solving such DCOPs. Preliminary results illustrate the benefits of the new method
KCDC - The KASCADE Cosmic-ray Data Centre
KCDC, the KASCADE Cosmic-ray Data Centre, is a web portal, where data of
astroparticle physics experiments will be made available for the interested
public. The KASCADE experiment, financed by public money, was a large-area
detector for the measurement of high-energy cosmic rays via the detection of
air showers. KASCADE and its extension KASCADE-Grande stopped finally the
active data acquisition of all its components including the radio EAS
experiment LOPES end of 2012 after more than 20 years of data taking. In a
first release, with KCDC we provide to the public the measured and
reconstructed parameters of more than 160 million air showers. In addition,
KCDC provides the conceptional design, how the data can be treated and
processed so that they are also usable outside the community of experts in the
research field. Detailed educational examples make a use also possible for
high-school students and early stage researchers.Comment: 8 pages, accepted proceeding of the ECRS-symposium, Kiel, 201
- …
