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Abstract. The geographically distributed data centres problem (GDDC) is a nat-
urally distributed resource allocation problem. The problem involves allocating a
set of virtual machines (VM) amongst the data centres (DC) in each time period
of an operating horizon. The goal is to optimize the allocation of workload across
a set of DCs such that the energy cost is minimized, while respecting limitations
on data centre capacities, migrations of VMs, etc.. In this paper, we propose a
distributed optimization method for GDDC using the distributed constraint op-
timization (DCOP) framework. First, we develop a new model of the GDDC as a
DCOP where each DC operator is represented by an agent. Secondly, since tradi-
tional DCOP approaches are unsuited to these types of large-scale problem with
multiple variables per agent and global constraints, we introduce a novel semi-
asynchronous distributed algorithm for solving such DCOPs. Preliminary results
illustrate the benefits of the new method.

1 Introduction

Distributed constraint reasoning (DCR) gained an increasing interest in recent years due
to its ability to handle cooperative multi-agent problems that are naturally distributed.
DCR has been applied to solve a wide range of applications in multi-agent coordina-
tion such as distributed scheduling [20], distributed planning [7], distributed resource
allocation [24], target tracking in sensor networks [23], distributed vehicle routing [17],
optimal dispatch in smart grid [22], etc. These applications can be solved by a centralized
approach once the knowledge about the problem is delivered to a centralized authority.
However, in such applications, it may be undesirable or even impossible to gather the
whole problem knowledge into a single authority. In general, this restriction is mainly due
to privacy and/or security requirements: constraints may represent strategic information
that should not be revealed to other agents that can be seen as competitors, or even to
a central authority. The cost or the inability of translating all information to a single
format may be another reason: in many cases, constraints arise from complex decision
processes that are internal to an agent and cannot be articulated to a central authority.
More reasons why distributed methods may be desirable for such applications and often
make a centralized process inadequate have been listed in [11].

? This work is funded by the European Commission under FP7 Grant 608826 (GENiC - Globally
Optimised Energy Efficient Data Centres).

?? This work is funded by Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289.
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In DCR, a problem is expressed as a distributed constraint network. A distributed
constraint network is composed of a group of autonomous agents where each agent has
control of some elements of information about the problem, that is, variables and con-
straints. Each agent owns its local constraint network, and variables in different agents
are connected by constraints. Traditionally, there are two large classes of distributed con-
straint networks. The first class considers problems where all constraints are described
by boolean relations (hard constraint) on possible assignments of variables they involve.
They are called distributed constraint satisfaction problems (DisCSP). The second class
of problems are distributed constraint optimization problems (DCOP) where constraints
are described by a set of cost functions for combinations of values assigned to the vari-
ables they connect. In DisCSP, the goal is to find assignments of values to variables such
that all (hard) constraints are satisfied while in DCOP the goal is to find assignments
that minimize the objective function defined by the sum of all constraint costs.

Researchers in the DCR field have developed a range of different constraint satis-
faction and optimisation algorithms. The main algorithms and protocols include syn-
chronous [37,15,10], asynchronous [38,6,23,36] and semi-synchronous [21,34,13] search,
dynamic programming methods [25], and algorithms which respect privacy and auton-
omy [35,8] versus those which perform local search [16,40]. In order to simplify the
algorithm specification, most of these algorithms assume that all constraints are binary,
and that each agent controls exactly one variable. Such assumptions simplify the algo-
rithm specification but represent a limitation in the adoption of distributed constraint
reasoning techniques in real-world applications.

The first assumption was justified by techniques which translated non-binary prob-
lems into equivalent binary ones; however, recent research has demonstrated the benefits
of handling non-binary constraints directly in distributed algorithms [5,32]. The second
assumption is justified by the fact that any DCR problem with several variables per agent
can be solved by those algorithms once transformed using one of the following reformula-
tions [37,9]: (i) compilation, where for each agent we define a new variable whose domain
is the set of solutions to the original local problem; (ii) decomposition, where for each
agent we create a virtual agent for each of its variables. However, neither of these meth-
ods scales up well as the size of the local problems increase, either (i) because of the space
and time requirements of the reformulation, or (ii) because of the extra communication
overhead and the loss of a complete view on the local problem structure. Only a few
algorithms for handling multiple local variables in DisCSP have been proposed [3,39,19].
These algorithms are specific to DisCSP, since they reason about hard constraints, and
cannot be applied directly to DCOP, which are concerned with costs. Another limitation
is that most DCOP algorithms do not actively exploit hard constraints as they require
all constraints to be expressed as cost functions.

In this paper, we present a general distributed model for solving real-life DCOPs,
including hard constraints, in order to model the geographically distributed data centres
problem [27,4,29,28]. After finding that traditional DCOP approaches are unsuited to
these types of large-scale problem with multiple variables per agent and global (hard)
constraints, we introduce, agac-ng, a novel optimization distributed search algorithm
for solving such DCOPs. In the agac-ng algorithm agents assign their variables and gen-
erate a partial solution sequentially and synchronously following an ordering on agents.
However, generated partial solutions are propagated asynchronously by agents with unas-
signed variables. The concurrent propagation of partial solutions enables early detection
of a need to backtrack and saves a lot of search effort. agac-ng can perform bounded-
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error approximation while maintaining a theoretical guarantee on solution quality. In
agac-ng, a global upper bound which represents the cost of the best known solution
to the problem is maintained by all agents. When propagating partial solutions agents
ensure that the current lower bound on the global objective augmented by the bounded-
error distance does not exceed the global upper bound.

Data centres consume considerable amounts of energy: an estimated 416.2 terawatt-
hours was consumed in 2014 [2] with the US accounting for approximately 91 terawatts
[1]. While many industries and economies are dependent on such infrastructure, the in-
crease in high-computing requirements for cloud-based services around internet-of-things,
big data, etc. have lead to some experts predicting that this consumption could treble in
the next decade [2] unless significant breakthroughs are made in reducing consumption.

Geographically distributed data centres present many possible benefits in terms of re-
ducing energy costs through global, rather than local, optimisation. In particular each lo-
cation may have different unit energy costs, external weather conditions, local renewable
sources, etc. Therefore reasoning at a global level can exploit these differences through op-
timally reallocating workload in each time period through migration of virtual machines
(VMs), subject to constraints on number of migrations, virtual machine sovereignty, data
centre capacities, etc.

Gathering the whole knowledge about the problem into a centralized location may
not be feasible in the geographically distributed data centres because of the large amount
of information (problem specifications) each data centre would need to communicate to
the centralized solver to solve the problem. In addition, data centres may wish to keep
some information about their local constraints, costs, and topology confidential and not
share it with other data centres.

The maximum energy that can be consumed by a data centre and its running capac-
ity might also be confidential information that data centres want to keep private from
operators of other data centres. Thus, the geographically distributed data centres is a
naturally distributed resource allocation problem where data centres may not be willing
to reveal their private information to other data centres. In addition, sending the whole
knowledge about the problem to a centralized location will create a bottleneck on the
communication towards that location. Thus, a distributed solving process is preferred
for the geographically distributed data centres problem.

This paper is structured as follows. Section 2 gives the necessary background for dis-
tributed constraint reasoning and the general definition of the geographically distributed
data centres. We present our model of the GDDC problem as DCOP in Section 3. Sec-
tion 4 introduces our new algorithm, agac-ng, for solving DCOP with global hard con-
straints and multiple variables per agent. We report experimental results in Section 5.
Section 6 gives a brief overview of related works on distributed constraint reasoning.
Finally, we conclude the paper in Section 7.

2 Preliminaries/Background

2.1 Distributed Constraint Optimization Problem

A constraint satisfaction problem (CSP) has been defined for a centralized architecture by
a triple (X ,D, C), where X = {x1, . . . , xp} is a set of p variables, D = {d1, . . . , dp} is the
set of their respective finite domains, and C is a set of (hard) constraints. A constraint
c(X) ∈ C is a relation over the ordered subset of variables X = (xj1 , . . . , xjk), which
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defines those value combinations which may be assigned simultaneously to the variables
in X. |X| is the arity of c(X), and X is its scope. A tuple τ = (vj1 , . . . , vjk) ∈ c(X) is a
support for c(X), and τ [xi] is the value of xi in τ . A solution to a CSP is an assignment
to each variable of a value from its domain, such that all constraints are satisfied.

A global constraint captures a relation over an arbitrary number of variables. For
example, the AllDiff constraint states that the values assigned to the variables in its
scope must all be different [30]. Filtering algorithms which exploit the specific structure
of global constraints are one of the main strengths of constraint programming. During
search, any value v ∈ di that is not generalized arc-consistent (gac) can be removed
from di. A value vi ∈ di, xi ∈ X is generalized arc-consistent with respect to a
constraint c(X) iff there exists a support τ for c(X) such that vi = τ [xi], and for every
xj ∈ X, xi 6=xj , τ [xj ] ∈ dj . Variable xi is gac if all its values are gac with respect to
every constraint in C. A CSP is gac if all its variables are gac.

A distributed constraint satisfaction problem (DisCSP) is a CSP where the variables,
domains and constraints of the underlying network are distributed over a set of au-
tonomous agents. Formally, a distributed constraint network (DisCSP) is defined by a
5-tuple (A,X ,D, C, ϕ), where X ,D and C are as above. A is a set of n agents {a1, . . . , an},
and ϕ : X → A is a function specifying an agent to control each variable. Each variable
belongs to one agent and only the agent who owns a variable has control of its value and
knowledge of its domain. Let Xi denotes the set of variables belonging to agent ai, i.e.
Xi = {∀xj ∈ X : ϕ(xj)= ai}. Agent ai knows all constraints, Ci, involving its variablesXi.
Xi can be partitioned in two disjoint subsets Pi = {xj | ∀c(X) ∈ Ci, xj ∈ X → X ⊆ Xi}
and Ei = Xi \ Pi. Pi is a set of private variables, which only share constraints with
variables inside ai. Conversely, Ei is a set of variables linked to the outside world and
sometimes referred to as external (or negotiation) variables.

This distribution of variables divides C in two disjoint subsets, Cintra which are be-
tween variables of same agent (i.e., c(X) ∈ Cintra, X ⊆ Xi), and Cinter which are between
variables of different agents called intra-agent (private) and inter-agent constraint sets,
respectively. An intra-agent constraint c(X) is known by the agent owner of X, and it is
unknown by other agents. Usually, it is considered that an inter-agent constraint c(X) is
known by every agent owning a variable in X. Two agents are neighbours if they control
variables that share a constraint; we denote by Ni the set of neighbours of agent ai.

As in the centralized case, a solution to a DisCSP is an assignment to each variable of
a value from its domain, satisfying all constraints. A distributed constraint optimisation
problem (DCOP) is defined by a DisCSP (A,X ,D, C, ϕ), together with an objective
function. A solution to a DCOP is a solution for the DisCSP which is optimal with
respect to the objective function.1

For the rest of the paper we consider a generic agent ai ∈ A. Agent ai stores a unique
order on agents, i.e. an ordered tuple of all the agent IDs, denoted by ≺o. ≺o is called the
current order of ai. Agents appearing before agent ai in ≺o are the higher priority agents
(predecessors) and conversely the lower priority agents (successors) are agents appearing
after ai in ≺o. For sake of clarity, we assume that the order is the lexicographic ordering
[1, 2, . . . , n]. Each agent maintains a counter, and increments it whenever it changes its
assignment. The current value of the counter tags each generated assignment.

Definition 1. An assignment for an agent ai ∈ A is an assignment for each external
variable of a value from its domain. That is, a tuple (〈Ei, Vi〉, ti) where Vi ∈ ×

xj∈Ei

dj,

1 Cost functions can be implemented using element constraints [31].
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Vi[xj ] ∈ dj and ti is the tag value. When comparing two assignments, the most up to
date is the one with the greatest tag ti.

Definition 2. A current partial assignment cpa is an ordered set of assignments
of external variables [(〈E1, V1〉, t1), . . . , (〈Ek, Vk〉, tk)]. Two cpas are compatible if the
values of each common variable amongst the two cpas are equal. ag(cpa) is the set of
all agents with assigned variables in the cpa.

Definition 3. A timestamp associated with a cpa is an ordered list of counters [t1, . . . , tk]
where ∀j ∈ 1..k, tj is the tag of the agent aj. When comparing two cpas, the strongest
one is that associated with the lexicographically greater timestamp. That is, the cpa with
greatest value on the first counter on which they differ, if any, otherwise the longest one.

During search agents can infer inconsistent sets of assignments called no-goods.

Definition 4. A no-good or conflict set is an assignment set of variables that is not
contained in any solution. A no-good is a clause of the form ¬[(xi = vi)∧ (xj = vj)∧ . . .∧
(xk = vk)], meaning that these assignments cannot be extended to a solution. We say that
a no-good is compatible with a cpa if every common variable is assigned the same value
in both.

Agents use these no-goods to prune the search space. To stay polynomial we only
keep no-goods that are compatible with the current state of the search. These no-goods
can be a direct consequence of propagating constraints (e.g., any assignment set that
violates a constraint is a no-good) or can be derived from a set of no-goods. Literally,
when all values of the variable xk are ruled out by some no-good, they are resolved
computing a new no-good as follows. The new generated no-good is the conjunction
of all these no-goods for values of xk removing variable xk. If the generated no-good
contains assignments of local variables, agent ai uses this no-good locally to prune the
search space. Otherwise, agent ai reports the no-good to the agent having the lowest
priority among those having variables in the new generated no-good.

2.2 Geographically Distributed Data Centres Problem

The geographically distributed data centres (GDDC) problem considered here can be
defined as follows. We are given a set of data centre locations L, and a set of virtual
machines that must be assigned to physical servers in each time period of an operating
horizon T . Each location has its own unit energy price eplt for each time period (sample
real time prices are shown in Figure 1). The cost of executing a virtual machine (VM) in
a location can differ for each time period for the same location, and for each location in
the same time period. This cost constitutes not only the electricity price from the local
utility, but is also affected by external factors such as the outdoor temperature, equipment
quality, etc. The latter can be estimated using the Power Usage Effectiveness (PUE)
which is the ratio of the total power consumption of a DC to the power consumption of
the IT equipment alone.

Furthermore each location has an associated region k that a subset of sovereign VMs
can only be performed in (e.g., for security reasons). Therefore for some VMs the set
of locations where they can be performed is restricted. A data centre has a maximum
capacity on the IT power consumption pmaxl (aggregated across all servers), and a
maximum number of migrations in/out, mmaxl, that can occur in each time period
across all VM types.
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Fig. 1: Sample real time prices for 13 different locations over the same 24 hour period.

There is a set of VM types V , where each type v has an associated power consumption
pv, and quantity nv that are running in each time period. The type of a VM type can
be further subdivided into those that can be run everywhere and those that can only be
run in a specific region, i.e. that can only be run at its current location or in one of a
limited set of other locations (e.g., a subset of VMs can only be run in European data
centres). Let Rl be the set of VM types that can be run in location l.

We must then decide how many VMs of each type to allocate to each data centre in
each time period such that the total energy cost of performing the VMs over the horizon,
plus the costs of all migrations (where emiv/emov is the energy cost of migrating a vm
in/out), is minimized. This allocation is subject to capacity restrictions in the data
centres, limitations on the number of migrations per data centre per time period, and
limitations on migration of sovereign VMs.

3 GDDC as DCOP

The geographically distributed DCs can naturally be modeled as a DCOP as follows.
(For simplicity we consider the time periods to be of duration one hour and thus energy
and power values can be used interchangeably.)

Agents.

– Each DC is represented by an agent A = L.

(External) Variables.

– In each DC/agent there is an integer variable xlvt that represents the number of VMs
of type v allocated to DC/agent al in period t.

– In each DC/agent there is an integer variable cl that indicates the total energy cost
for running and migrating VMs in Rl over all time-periods.

Note here that agents only have variables xlvt if v ∈ Rl. This is sufficient for enforcing
the sovereignty constraint.
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(Private) Variables.

– In each DC/agent there is an integer variable milvt that indicates how many VMs of
type v are migrated in to the DC al in time-period t.

– In each DC/agent there is an integer variable molvt that indicates how many VMs of
type v are migrated out of the DC al in time-period t.

– In each DC/agent there is a real variable ult that indicates the energy consumption
of DC l for time-period t.

– In each DC/agent there is an integer variable rl that indicates the total energy cost
of running VMs in Rl over the entire horizon.

– In each DC/agent there is an integer variable ml that indicates the total energy cost
for migrating VMs in Rl over all time-periods.

(Intra-agent) Constraints.
We present here the intra-agent constraints held by agent al ∈ A. Only agent/DC al

is aware of the existence of its intra-agent constraints.
Allocation. The number of VMs of a given type running in time period are equal to the
number running in the previous time period plus the incomings, minus the outgoings.

∀v∈Rl ,∀t∈T : xlv(t+1) = xlvt +milvt −molvt (3.1)

Capacity. The total energy consumed by a DC al for running VMs is bounded:

∀t∈T : ult =
∑
v∈Rl

xlvt · pv ≤ pmaxl (3.2)

Migration. The amount of incoming/outgoing VMs per time period for each DC is
limited by a given threshold:

∀t∈T :
∑
v∈Rl

milvt +molvt ≤ mmaxl (3.3)

We further add the following redundant constraint on migration in/out variable pairs,
enforcing that at least one must be 0 in every location in every time period for every
type:

∀v∈Rl ,∀t∈T : milvt = 0 ∨molvt = 0 (3.4)

Running cost. The total energy cost of running VMs in al over the entire horizon is:

rl =
∑
t∈T

eplt · ult (3.5)

Migration cost. The total energy cost for migrating VMs in Rl over all time-periods
is:

ml =
∑
v∈Rl

∑
t∈T

(milvt · emiv +molvt · emov) · eplt (3.6)

Internal cost. The total energy cost for running and migrating VMs in Rl over all
time-periods is:

cl = rl +ml (3.7)
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(Inter-agent) Constraints.
An inter-agent constraint is totally known by all agents owning variables it involves.

Assignment. VMs of type v must all be assigned to DCs in each time-period where v
is in Rl:

∀v∈V ,∀t∈T :
∑

l∈L|v∈Rl

xlvt = nv (3.8)

Objective. The global objective is to minimize the sum of the total energy cost of running
VMs in all DCs together with total energy cost for migrating VMs over the entire horizon:

obj =
∑
l∈L

cl

4 Nogood-based Asynchronous Generalized Arc-Consistency
agac-ng

To solve a challenging distributed constraint optimization problem such as GDDC, we
propose a new DCOP algorithm, called agac-ng (nogood-based asynchronous generalized
arc-consistency). To the best of our knowledge, agac-ng is the first algorithm for solving
DCOP with multiple variables per agent and non-binary and hard constraints that can
find the optimal solution, or a solution within a user-specified distance from the optimal
using polynomial space at each agent.

When solving distributed constraint networks, the solution process is restricted: each
agent ai is only responsible for making decisions (assignments) of the variables it con-
trols (Xi). Thus, agents must communicate with each other exchanging messages about
their variable assignments and conflicts of constraints in order to find a global (optimal)
solution. Several distributed algorithms for solving the DCOP have been designed by
the distributed constraint reasoning community. Regarding the manner on which assign-
ments are processed and search performed on these algorithms, they can be categorized
into synchronous, asynchronous, or semi-synchronous.

The first category consists of those algorithms in which agents assign values to their
variables in a synchronous and sequential way. Although synchronous algorithms do
not exploit the parallelism inherent from the distributed system, their agents receive
consistent information from each other. The second category consists of algorithms in
which the process of proposing values to the variables and exchanging these proposals
is performed concurrently and asynchronously between agents. Agents take advantage
from the distributed formalism to enhance the degree of concurrency. However, in asyn-
chronous algorithms, the global assignment state at any particular agent is in general
inconsistent. The third category is that of algorithms combining both sequential value
assignments by agents together with concurrent computation. Agents take advantage
from both the above-mentioned categories: they perform concurrent computation while
exchanging consistent information between agents.

In this section we propose a novel semi-synchronous search algorithm for optimally
solve DCOPs called agac-ng (nogood-based asynchronous generalized arc-consistency).
In agac-ng algorithm, agents assign their variables and generate a partial solution se-
quentially and synchronously following an ordering on agents. However, generated partial
solutions are propagated asynchronously by neighbours with unassigned variables. The
concurrent propagation of partial solutions enables an early detection of a need to back-
track and saves search effort.
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agac-ng incorporates an asynchronously generalized arc-consistency phase in a syn-
chronous search procedure. agac-ng follows an ordering on agents to perform the se-
quential assignments by agents. Agents assign their variables only when they hold the
cpa. The cpa is a unique message (token) that is passed from one agent to the next
in the ordering. The cpa message carries the current partial assignment that agents at-
tempt to extend into a complete solution by assigning their variables in it.2 When an
agent succeeds in assigning its variables on the cpa, it sends this cpa (token) to the next
agent on the ordering. Furthermore, copies of the cpa are sent to all neighbors whose as-
signments are not yet on the cpa. These agents maintain the generalized arc-consistency
asynchronously in order to detect as early as possible inconsistent partial assignments.
The generalized arc-consistency process is performed as follows. When an agent receives
a cpa, it updates the domain of its variables and copies of neighbors variables, removing
all values that are not gac using the no-goods as justification of value deletions.

When an agent generates an empty domain as a result of maintaining gac, it resolves
the no-goods ruling out values from that domain, producing a new no-good. Then, the
agent backtracks to the agent with the lowest priority in the conflict by sending the re-
solved no-good. Hence, multiple backtracks may be performed at the same time coming
from different agents having an empty domain. These backtracks are sent concurrently
by these different agents to different destinations. The reassignments of the destination
agents then happen simultaneously and generate several cpas. However, the strongest
cpa coming from the highest level in the agent ordering will eventually dominate all
others. Agents use timestamps attached to cpas to detect the strongest one (see Def-
inition 3). Interestingly, the search process of higher levels with stronger cpa can use
no-goods reported by the (killed) lower level processes, so that it benefits from their
computational effort.

4.1 The algorithm description

Each agent ai ∈ A executes the pseudo-code shown in Figure 2. The agent ai has a local
solver where it stores and propagates the most up-to-date assignments received from
higher priority agents (solver.cpa) w.r.t. the agent ordering (≺o). In agac-ng, agents
exchange the following types of messages (where ai is the sender):

ok?: agent ai passes on the current partial assignment (cpa) to a lower priority agent.
According to the ID of the agent that has the token attached to the message by ai,
the receiver will try to extend the cpa (when it is the next agent on the ordering) or
maintain generalized arc-consistency phase.

ngd: agent ai reports the inconsistency to a higher priority agent. The inconsistency is
reported by a no-good (i.e., a subset of the cpa).

sol: agent ai informs all other agents of the new best solution (cpa) and new better
bound.

stp: agent ai informs agents if either an optimal solution is found or the problem is
found to be unsolvable.

Agent ai running the agac-ng algorithm starts the search by calling procedure
initialize in which ai sets the upper bound to +∞ and initializes its local solver
and sets the objective variable to minimize (lines 9 to 11) before setting counter tags

2 A complete solution here is a complete assignments of all agents’ external variables.
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of other agents to zero (line 12). If agent ai is the initialising agent (the first agent in
the agent ordering ≺o), it initiates the search by calling procedure assign (line 15) af-
ter setting itself as the agent that has the token (i.e., the privilege to make decisions)
(line 14). Then, a loop considers the receiving and processing of the possible message
types (lines 2 to 8).

When calling procedure assign, agent ai tries to find a local solution, which is con-
sistent with the assignments of higher agents (solver.cpa). If agent ai fails to find a
consistent assignment, it calls procedure backtrack (line 23). If ai succeeds, it incre-
ments its counter ti and generates a cpa from higher agents assignments (solver.cpa)
augmented by the assignments of its external variables (Ei), lines 17 to 18.3 If the cpa
includes assignments of all agents (ai is the last agent in the order), agent ai calls pro-
cedure reportSolution() to report a new solution (line 20). Otherwise, agent ai sends
forward the cpa to every neighboring agent (Ni \ ag(cpa)) whose assignments are not
yet on the cpa including the next agent that will extend the cpa (i.e., the agent that
will have the token) (lines 28 to 30) by calling procedure sendForward(), line 22.

When agent ai (the last agent) calls procedure reportSolution, a complete assign-
ment has been reached, with a new global cost of B (line 24). Agent ai sends the full
current partial assignment (cpa), i.e. solution, with the new global cost to all other
agents (line 25). Agent ai calls then procedure storeSolution() (line 26) to set the up-
per bound to new global cost value and the best solution to the newly found one, lines 54
to 55, and to post a new constraint requiring that the global cost should not exceed the
cost of the best solution found so far (taking into account the error-bound). Finally, agent
ai calls procedure assign() to continue the search for new solutions with better cost
(line 27). Whenever agent ai receives a sol message it calls procedure storeSolution().

Whenever ai receives an ok? message, procedure processOK is called (line 5). Agent
ai checks if the received cpa is stronger than its current cpa (solver.cpa) by comparing
the timestamp of the received cpa to that stored locally, function compareTimeStamp

call (line 31). If it is not the case, the received cpa is discarded. Otherwise, ai sets the
token to the newly received one and updates the local counters of all agents in the cpa by
those freshly received (lines 33 to 35). Next, agent ai updates its solver (solver.update) to
include all assignments of agents in the received cpa and propagates their effects locally
(line 36). If agent ai generates an empty domain as a result of calling solver.update, ai
calls procedure backtrack (line 39), otherwise, ai checks if it has to assign its variables
(if it has the token) and then calls procedure assign if it is the case (line 38).

When agent ai generates an empty domain after propagating its constraints, the
procedure backtrack is called to resolve the conflict. Agent ai requires its local solver to
explain the failure by generating a new no-good (ng), that is, the subset of assignments
that produced the inconsistency, (line 40). If the new no-good (ng) is empty, agent
ai terminates execution after sending a stp message to all other agents in the system
meaning that the last solution found is the optimal one (line 42). Otherwise, agent ai
sets the token to be the agent having the lowest priority among those having variables
in the newly generated no-good ng. If the token is different than ai, the no-good ng is
reported to token through a ngd message, line 46. Otherwise, ai has to seek a new local
solution for its variables by calling procedure assign after storing the generated no-good
in its local solver (lines 48 to 49).

When a ngd message is received by an agent ai, it checks the validity of the received
no-good (line 50). A no-good is valid if the assignments on it are consistent with those

3 Only external variables linked to unassigned neighbors are needed.
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procedure AGAC-ng()
01. initialize();
02. while ( ¬end ) do
03. msg ← getMsg();
04. switch ( msg.type ) do
05. ok?: processOK(msg.cpa,msg.next);
06. ngd: processNgd(msg.nogood);
07. sol : storeSolution(msg.sol,msg.b);
08. stp : end← true ;

procedure initialize()
09. end← false; solution← ∅; UB ← +∞;
10. solver.initialize();
11. solver.setObjective(obj);
12. foreach ( aj ∈ A ) do tj ← 0;
13. if (isFirstAgent(≺o) ) then
14. token← ai;
15. assign();

procedure assign()
16. if ( solver.findSolution() ) then
17. ti ← ti + 1;
18. cpa← {solver.cpa ∪ Ei};
19. if (n= |ag(cpa)| ) then
20. reportSolution(cpa);
21. else
22. sendForward(cpa, nextAgent());
23. else backtrack() ;

procedure reportSolution(cpa)
24. B ← obj.getValue();
25. sendMsg:sol〈cpa,B〉 to A \ ai;
26. storeSolution(cpa, B);
27. assign();

procedure sendForward(cpa, aj)
28. token← aj ;
29. foreach ( ak ∈ {Ni \ ag(cpa)} ) do
30. sendMsg:ok?〈cpa, aj〉 to ak;

procedure processOK(cpa, next)
31. s← compareTimeStamp(cpa);
32. if ( s > 0 ) then
33. token← next;
34. foreach ( tj ∈ cpa ) do
35. tj ← cpa.tj ;
36. if ( solver.update(cpa[s..]) ) then
37. ti ← 0;
38. if ( token = ai ) then assign();
39. else backtrack();

procedure backtrack()
40. ng ←solver.explainFailure() ;
41. if (ng = ∅ ) then
42. sendMsg:stp〈sol,UB〉 to {A \ ai};
43. else
44. token← ng.lastAgent();
45. if ( token 6= ai ) then
46. sendMsg:ngd〈ng〉 to token;
47. else
48. solver.post(ng);
49. assign();

procedure processNgd(ng)
50. if (isCompatible(ng) ) then
51. token← ai;
52. solver.post(ng);
53. assign();

procedure storeSolution(cpa, bound)
54. solution← cpa;
55. UB ← bound;
56. solver.post(obj < UB − errorBound);

function isCompatible(assignments)
57. foreach ( xj ∈ assignments ) do
58. if (xj 6= solver.xj ) then
59. return(false);
60. return(true);

function compareTimeStamp(cpa)
61. from ( j ← 1 to size(cpa) ) do
62. Let ak ← cpa[j];
63. if ( cpa.tk > tk ) then
64. return(j);
65. if ( cpa.tk < tk ) then
66. return(-j);
67. return(0);

Fig. 2: agac-ng algorithm running by agent ai.
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stored locally in solver. If the received no-good (ng) is valid, ai sets itself as the agent
having the token (line 51). Next, agent ai stores ng and propagates it in its local solver.
The procedure assign is then called to find a new local solution for the variables of ai
(line 53). Finally, when a stp message is received, ai marks the end flag as true to stop
the main loop (line 8).

5 Evaluation of Distributed Approach

In this section we experimentally evaluate agac-ng, the distributed COP algorithm we
proposed in Section 4 for solving the DCOP model of the GDDC problem presented in
Section 3. All experiments were performed based on the DisChoco 2.0 platform4 [33],
in which agents are simulated by Java threads that communicate only through message
passing. We use the Choco-4.0.0 solver as local solver of each agent in the system [26].

5.1 Empirical Setup

Instances were generated for a scenario with 13 data centres across 3 continents, each
with a capacity defined to be 40MW. Real time price data was gathered for each location
for each hour for a set of five days. Dynamic PUE values of each DC were generated as
a function of the temperature across a sample day. There were 5 VM types chosen with
associated power consumption values of 20W, 40W, 60W, 80W and 100W respectively.
For each DC, VM creation petitions are randomly generated until their consumption
reaches a load percentage of 40% of the DC capacity. Each VM creation petition is
further randomly assigned a “sovereignty”, which is either the continent the DC belongs
to or the entire DC set.

Finally, instances had a migration limit for each data centre stating what percentage
of average VMs per data centre can be migrated per time period. We generated instances
with a limit of 5% and with a limit of 10%. There were 3 instances generated with
different seeds for each migration limit and for each of the five days of real time price
data, producing a set of 30 instances. Therefore instances typically had 10000 variables,
with domain sizes ranging from 15 to more than 500. For ci variables the domains are
larger and domain sizes ranges from 107 to more than 108. The number of constraints
was approximately 7500 with maximum arity of 49 variables. The baseline subsequently
used for comparison involves the case where there are 0 migrations, i.e. each DC just
performs the load that it was initially assigned in time zero across all time periods.

5.2 Search Strategy

The agac-ng algorithm requires a total ordering on agents. This ordering is used to pass
on the token (the privilege of assigning variables) between agents. The agent ordering
can then affect the behaviour of the algorithm and our empirical results (Section 5.3)
confirms the effect of agent ordering.

In the following we propose two agent orderings called o1 and o2. In both orderings
we use the same measure αi for an agent ai. For each agent ai, αi is the difference between
the most expensive and the cheapest price over all time slots for the DC represented by
agent ai. For o2, agents are sorted using an increasing order over αi. For o1, the first
4 http://dischoco.sourceforge.net
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Table 1: Distributed: Number of message exchanged by agents/DCs in solving each in-
stance.

price Base Euro
agac-ng (o1) agac-ng (o2)

Mig 5% Mig 10% Mig 5% Mig 10%
pr1 165.31 15,838 13,619 12,515 24,700
pr2 197.53 1,709 1,966 5,390 6,426
pr3 192.09 3,208 37,528 4,947 2,456
pr4 171.53 18,494 23,909 25,015 23,706
pr5 215.97 5,737 10,798 19,293 14,425

Table 2: Distributed: Results in terms of average monetary cost (in Euros) for migration
limits at 5% and 10%.

price Base Euro
agac-ng (o1) agac-ng (o2)

Mig 5% Mig 10% Mig 5% Mig 10%
pr1 165.31 164.11 164.03 162.45 159.71
pr2 197.53 187.92 190.21 186.26 187.92
pr3 192.09 186.85 186.20 186.73 185.58
pr4 171.53 167.55 166.24 166.18 164.11
pr5 215.97 215.69 215.76 215.69 215.40

agent is selected to be the one with median measure αi followed in increasing order
by agents, say aj , having the smallest distance to the measure αi, i.e. | αj − αi |. For
example, let α1 = 22, α2 = 10, α3 = 44, α4 = 55, α5 = 30, thus, o1=[a5, a1, a3, a2, a4]
and o2=[a2, a1, a5, a3, a4].

We investigated search strategies for the model of each agent. We are using the migra-
tion_in and migration_out variables (miivt and moivt) as decision variables for the local
solver of each agent/DC ai. Every agent/DC ai only communicates decisions about xivt
and ci as they are the external variables of agent ai while migration variables are private
variables. Preliminary results suggested the best approach for solving the problems was
to choose decision variables (i.e., migration in and migration out variables) according to
the domwdeg variant of the weighted degree heuristic. Values of the migration in vari-
ables of the cheapest time slot and the migration out variables of the most expensive time
slot are selected in a decreasing order (the upper bound) and other migration variables
on increasing order (the lower bound).

5.3 Empirical Results

We evaluate the performance of the algorithm by communication load and solution qual-
ity. Communication load is measured by the total number of exchanged messages among
agents during algorithm execution (#msg) [18]. Results are presented on Table 1. So-
lution quality is assessed by two measures: (i) in terms of average monetary cost in ¤
(Table 2) and (ii) in terms of average percentage savings over baseline (Table 3). For all
instances we use a timeout limit of one hour per instance and present the average cost
(respectively #msg) per price/migration-limit instance type (across the three instances).

The results are given for the both static agent ordering presented in Section 5.2 for
the three metrics Tables 1 to 3.

Regarding the communication loads shown in Table 1, the agents exchange few mes-
sages in solving the problems. In the worst case, agac-ng agents exchanges 37, 528 mes-
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Table 3: Distributed: Results in terms of average percentage savings over baseline for
migration limits at 5% and 10%.

price Base Euro
agac-ng (o1) agac-ng (o2)

Mig 5% Mig 10% Mig 5% Mig 10%
pr1 165.31 0.73% 0.77% 1.73% 3.39%
pr2 197.53 4.87% 3.71% 5.71% 4.87%
pr3 192.09 2.73% 3.07% 2.79% 3.39%
pr4 171.53 2.32% 3.08% 3.12% 4.33%
pr5 215.97 0.13% 0.10% 0.13% 0.26%

sages to solve the problems. This represents a significant result regarding the complexity
and the size of the instances solved by a complete DCOP algorithm. This is mainly due
to the expensive local filtering and search per each local solver and the topology of the
instances solved: all instances solved have a complete constraint network. Thus, agac-
ng produces more chronological backtracks than backjumps. This is explained by the
behaviour of the algorithm where only small improvements over the first solution/UB
were found. After the first solution, the agac-ng algorithm mainly backtracks from the
last agent on the ordering to the second last that returns the token to the last agent for
seeking new solutions and so on.

Comparing the solution quality (Tables 2 and 3), for instances pr5, agac-ng im-
provement over the baseline is insignificant. The improvement over the baseline ranges
between 0.1-0.26%, which represents less than a euro per day. For other instances, this
improvement is more significant mainly for pr2 where the improvement over the baseline
ranges between 3.71% and 5.71%, which represents between 7.32 and 11.27 euros per day.
This is an interesting result mainly because agents are solving problems only by passing
messages between them, without sharing their constraints or their prices, and keeping
their information private.

Comparing two different agents ordering, running agac-ng using agent ordering o2
always improves agac-ng using o1 for pricing. However, this is not always the case for the
number of message exchanges to solve the problem. The average cost over all instances
when running agac-ng using o2 is 366 and 369 when using o1. For communication load,
agac-ng (o2) requires an average of 27, 775 messages over all instances while agac-ng
(o2) requires 26, 561 messages.

Regarding the migration limit, the results suggests that having a smaller migration
limit is better for the distributed solving process regarding the number messages ex-
changes while the solution quality is slightly affected by the change on the migration
limits. In the distributed problems having larger domains leads to more messages when
the filtering power is limited.

6 Related Work

Many distributed algorithms for solving DisCSP/DCOP have been designed in the last
two decades. Synchronous Backtrack (SBT) is the simplest DisCSP search algorithm.
SBT performs assignments sequentially and synchronously. In SBT, only the agent hold-
ing a current partial assignment (cpa) performs an assignment or backtrack [41]. Meisels
and Zivan ([21]) extended SBT to Asynchronous Forward Checking (AFC), an algo-
rithm in which the forward checking propagation [14] is performed asynchronously [21].
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In AFC, whenever an agent succeeds to extend the cpa, it sends the cpa to its successor
and it sends copies of this cpa to the other unassigned agents in order to perform the
forward checking asynchronously. The Nogood-Based Asynchronous Forward Checking
algorithm (AFC-ng), which is an improvement of AFC, has been proposed in [34]. Un-
like AFC, AFC-ng uses no-goods as justification of value removals and allows several
simultaneous backtracks coming from different agents and going to different destina-
tions. AFC-ng was shown to outperform AFC. The pioneering asynchronous algorithm
for DisCSP was asynchronous backtracking (ABT) [38,6]. ABT is executed autonomously
by each agent, and is guaranteed to converge to a global consistent solution (or detect
inconsistency) in finite time.

The synchronous branch and bound (SyncBB) [15] is the basic systematic search al-
gorithm for solving DCOP. In SyncBB, only the agent holding the token is allowed to
perform an assignment while the other agents remain idle. Once it assigns its variables,
it passes on the token and then remains idle. Thus, SyncBB does not make any use
of concurrent computation. No-Commitment Branch and Bound (NCBB) is another
synchronous polynomial-space search algorithm for solving DCOPs [10]. To capture
independent sub-problems, NCBB arranges agents in constraint tree ordering. NCBB
incorporates, in a synchronous search, a concurrent computation of lower bounds in
non-intersecting areas of the search space based on the constraint tree structure. Asyn-
chronous Forward Bounding (AFB) has been proposed in [12] for DCOP to incorporate a
concurrent computation in a synchronous search. AFB can be seen as an improvement of
SyncBB where agents extend a partial assignment as long as the lower bound on its cost
does not exceed the global upper bound. In AFB, the lower bounds are computed con-
currently by unassigned agents. Thus, each synchronous extension of the cpa is followed
by an asynchronous forward bounding phase. Forward bounding propagates the bounds
on the cost of the partial assignment by sending to all unassigned agents copies of the ex-
tended partial assignment. When the lower bound of all assignments of an agent exceeds
the upper bound, it performs a simple backtrack to the previous assigned agent. Later,
the AFB has been enhanced by the addition of a backjumping mechanism, resulting in
the AFB_BJ algorithm [13]. The authors report that AFB_BJ, especially combined with
the minimal local cost value ordering heuristic performs significantly better than other
DCOP algorithms. The pioneer complete asynchronous algorithm for DCOP is Adopt
[23]. Later on, the closely related BnB-Adopt [36] was presented. BnB-Adopt changes
the nature of the search from Adopt best-first search to a depth-first branch-and-bound
strategy, obtaining better performance.

7 Conclusions

In this paper we studied the geographically distributed data centres problem where the
objective is to optimize the allocation of workload across a set of DCs such that the
energy cost is minimized. We introduced a model of this problem using the distributed
constraint optimization framework. We presented agac-ng, nogood-based asynchronous
generalized arc-consistency, a new semi-asynchronous algorithm for DCOPs with multiple
variables per agent and with non-binary and hard constraints. agac-ng can find the
optimal solution, or a solution within a user-specified distance form the optimal using
polynomial space at each agent. We showed empirically the benefits of the new method
for solving large-scale DCOPs.
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