296 research outputs found
Clinical utility of anti-cytosolic 5\u27-nucleotidase 1A antibody in idiopathic inflammatory myopathies
OBJECTIVE: To define the clinicopathologic features and diagnostic utility associated with anti-cytosolic 5\u27-nucleotidase 1A (NT5C1A) antibody seropositivity in idiopathic inflammatory myopathies (IIMs).
METHODS: Anti-NT5C1A antibody status was clinically tested between 2014 and 2019 in the Washington University neuromuscular clinical laboratory. Using clinicopathologic information available for 593 patients, we classified them as inclusion body myositis (IBM), dermatomyositis, antisynthetase syndrome, immune-mediated necrotizing myopathy (IMNM), nonspecific myositis, or noninflammatory muscle diseases.
RESULTS: Of 593 patients, anti-NT5C1A antibody was found in 159/249 (64%) IBM, 11/53 (21%) dermatomyositis, 7/27 (26%) antisynthetase syndrome, 9/76 (12%) IMNM, 20/84 (24%) nonspecific myositis, and 6/104 (6%) noninflammatory muscle diseases patients. Among patients with IBM, anti-NT5C1A antibody seropositive patients had more cytochrome oxidase-negative fibers compared with anti-NT5C1A antibody seronegative patients. Among 14 IBM patients initially negative for anti-NT5C1A antibody, three patients (21%) converted to positive. Anti-NT5C1A antibody seropositivity did not correlate with malignancy, interstitial lung disease, response to treatments in dermatomyositis, antisynthetase syndrome, and IMNM, or survival in IIMs.
INTERPRETATION: Anti-NT5C1A antibody is associated with IBM. However, the seropositivity can also be seen in non-IBM IIMs and it does not correlate with any prognostic factors or survival
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Intravenous Immunoglobulin Treatment in Multifocal Motor Neuropathy
# The Author(s) 2010. This article is published with open access at Springerlink.com Introduction Multifocal motor neuropathy (MMN) is characterized by asymmetric weakness of limbs and the electrophysiological finding of conduction block in motor nerves. Conduction block is the inability of nerves to propagate action potentials and is probably caused b
Intensive Teenage Activity Is Associated With Greater Muscle Hyperintensity on T1W Magnetic Resonance Imaging in Adults With Dysferlinopathy
Practice of sports during childhood or adolescence correlates with an earlier onset and more rapidly progressing phenotype in dysferlinopathies. To determine if this correlation relates to greater muscle pathology that persists into adulthood, we investigated the effect of exercise on the degree of muscle fatty replacement measured using muscle MRI. We reviewed pelvic, thigh and leg T1W MRI scans from 160 patients with genetically confirmed dysferlinopathy from the Jain Foundation International clinical outcomes study in dysferlinopathy. Two independent assessors used the Lamminen-Mercuri visual scale to score degree of fat replacement in each muscle. Exercise intensity for each individual was defined as no activity, minimal, moderate, or intensive activity by using metabolic equivalents and patient reported frequency of sports undertaken between the ages of 10 and 18. We used ANCOVA and linear modeling to compare the mean Lamminen-Mercuri score for the pelvis, thigh, and leg between exercise groups, controlling for age at assessment and symptom duration. Intensive exercisers showed greater fatty replacement in the muscles of the pelvis than moderate exercisers, but no significant differences of the thigh or leg. Within the pelvis, Psoas was the muscle most strongly associated with this exercise effect. In patients with a short symptom duration of <15 years there was a trend toward greater fatty replacement in the muscles of the thigh. These findings define key muscles involved in the exercise-phenotype effect that has previously been observed only clinically in dysferlinopathy and support recommendations that pre-symptomatic patients should avoid very intensive exercise
Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: The EMBASSY Study
Background Late-onset Pompe disease is characterized by progressive skeletal myopathy followed by respiratory muscle weakness, typically leading to loss of ambulation and respiratory failure. In this population, enzyme replacement therapy (ERT) with alglucosidase alfa has been shown to stabilize respiratory function and improve mobility and muscle strength. Muscle pathology and glycogen clearance from skeletal muscle in treatment-naïve adults after ERT have not been extensively examined. Methods This exploratory, open-label, multicenter study evaluated glycogen clearance in muscle tissue samples collected pre- and post- alglucosidase alfa treatment in treatment-naïve adults with late-onset Pompe disease. The primary endpoint was the quantitative reduction in percent tissue area occupied by glycogen in muscle biopsies from baseline to 6 months. Secondary endpoints included qualitative histologic assessment of tissue glycogen distribution, secondary pathology changes, assessment of magnetic resonance images (MRIs) for intact muscle and fatty replacement, and functional assessments. Results Sixteen patients completed the study. After 6 months of ERT, the percent tissue area occupied by glycogen in quadriceps and deltoid muscles decreased in 10 and 8 patients, respectively. No changes were detected on MRI from baseline to 6 months. A majority of patients showed improvements on functional assessments after 6 months of treatment. All treatment-related adverse events were mild or moderate. Conclusions This exploratory study provides novel insights into the histopathologic effects of ERT in late-onset Pompe disease patients. Ultrastructural examination of muscle biopsies demonstrated reduced lysosomal glycogen after ERT. Findings are consistent with stabilization of disease by ERT in treatment-naïve patients with late-onset Pompe disease
- …