90 research outputs found

    How does geological heterogeneity control floodplain groundwater dynamics?

    Get PDF
    Upland floodplains provide an important function in regulating river flows and controlling the coupling of hillslope runoff with rivers. A floodplain in an upland area of the River Tweed catchment, Scotland, was characterised using geophysics, 3D geological mapping, hydrogeological testing and geochemical sampling, and monitored from September 2011 to February 2013 for variations in groundwater levels, river stage, soil moisture and meteorological parameters, including a period of nine months of exceptionally high rainfall. The floodplain contains an unconsolidated, permeable alluvial and glaciofluvial aquifer 8 to 15 m thick, with transmissivity 50 to 1000 m2/d, which is coupled to the hillslope by permeable solifluction deposits. The floodplain aquifer is a significant store of, and conduit for, catchment water. It gains recharge from the river and the adjacent hillslope, transmitting groundwater downstream and acting as a buffer to restrict water flowing from the hillslope from directly entering the river. Floodplain groundwater level fluctuations are driven primarily by changes in river level and the propagation of pressure waves through the floodplain aquifer. There is significant lateral variation in floodplain groundwater response. Most of the floodplain aquifer is hydraulically connected to the river, but groundwater at the edge of the floodplain is strongly controlled by hillslope sub-surface flow. The geological structure and lithology of the hillslope-floodplain transition is an important hydrological control. It can enhance the influence of subsurface hillslope runoff to the floodplain, which has implications for runoff modelling, flood prevention interventions on hillslopes aimed at reducing runoff, and development at floodplain edges. Vertical heterogeneity in hydrological properties within the floodplain aquifer alters hydrological response, causing different depths of the floodplain to respond differently to hillslope and river inputs. These vertical variations need to be better taken into account in floodplain and hillslope-floodplain studies. This research demonstrates the importance of understanding the 3D geology and hydrogeology of floodplains in order to advance catchment research and effective flood management measures

    Geological structure as a control on floodplain groundwater dynamics

    Get PDF
    Groundwater in upland floodplains has an important function in regulating river flows and controlling the coupling of hillslope runoff with rivers, with complex interaction between surface waters and groundwaters throughout floodplain width and depth. Heterogeneity is a key feature of upland floodplain hydrogeology and influences catchment water flows, but it is difficult to characterise and therefore is often simplified or overlooked. An upland floodplain and adjacent hillslope in the Eddleston catchment, southern Scotland (UK), has been studied through detailed three-dimensional geological characterisation, the monitoring of ten carefully sited piezometers, and analysis of locally collected rainfall and river data. Lateral aquifer heterogeneity produces different patterns of groundwater level fluctuation across the floodplain. Much of the aquifer is strongly hydraulically connected to the river, with rapid groundwater level rise and recession over hours. Near the floodplain edge, however, the aquifer is more strongly coupled with subsurface hillslope inflows, facilitated by highly permeable solifluction deposits in the hillslope–floodplain transition zone. Here, groundwater level rise is slower but high heads can be maintained for weeks, sometimes with artesian conditions, with important implications for drainage and infrastructure development. Vertical heterogeneity in floodplain aquifer properties, to depths of at least 12 m, can create local aquifer compartmentalisation with upward hydraulic gradients, influencing groundwater mixing and hydrogeochemical evolution. Understanding the geological processes controlling aquifer heterogeneity, which are common to formerly glaciated valleys across northern latitudes, provides key insights into the hydrogeology and wider hydrological behaviour of upland floodplains

    Investigations into the effect of different land use on field-saturated hydraulic conductivity in the Eddleston Water catchment

    Get PDF
    Land use and management have an impact on the infiltration capacity of soil. It is thought that by changing the way we use and manage land we can increase infiltration into the soil, slow the flow of water through the catchment and reduce flood peaks. However, there are few observational data that directly measure changes in soil permeability in different land uses. This report describes field investigations into the role of land cover on soil permeability in part of the Eddleston catchment in the Scottish Borders as a pilot for a larger study in the future. Investigations were carried out at Wester Deans Farm on a range of land use types: coniferous woodland, improved grassland, a ten year old broadleaved transverse strip and rough grazing grassland. Experiments to measure the hydraulic conductivity (Kfs) of soils underlying these land uses were conducted using a constant head well permeameter (Guelph permeameter). In total there were 129 infiltration tests conducted for this study; 41 in coniferous woodland, 33 in improved grassland, 24 in a broadleaved transverse strip and 31 in rough grazing grassland. Results indicate that median Kfs rates were highest in soils under rough grazing, and medians statistically similar to the coniferous woodland and 10 year old transverse strip woodlands. Highest individual results, and overall range, were obtained under woodlands where root systems are able to create pathways for water flow. The lowest Kfs rates were under improved grasslands where dense animal grazing is known to increase compaction of the surface. Statistical analysis showed Kfs under improved grasslands to be statistically lower than the three other land uses tested. This study illustrates the role that areas of rough grazing may play in increasing soil infiltration and storage, and may have a similar impact to tree planting. Further study is planned on extending the surveys, and using these data to help plan soil restoration strategies

    De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1

    Get PDF
    Bardet–Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate

    Diverse species-specific phenotypic consequences of loss of function sorting nexin 14 mutations

    Get PDF
    Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo

    Genetic Analyses in Small for Gestational Age Newborns

    Get PDF
    Context: Small for gestational age (SGA) can be a result of fetal growth restriction, associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the present study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more CNVs and disturbed methylation and sequence variants may be present in genes known to be associated with fetal growth. Design: A prospective cohort study of subjects with a low birthweight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birthweight below the 1st centile and a control cohort of 24 appropriate for gestational age newborns were studied. Intervention: Array comparative genomic hybridization, genome-wide methylation studies and exome sequencing were performed. Main Outcome Measures The numbers of copy number variations, methylation disturbances and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern and one sequence variant explaining the SGA. Additional methylation disturbances and sequence variants were present 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We conclude that copy number variations, methylation disturbances and sequence variants all contribute to prenatal growth failure. Such genetic workup can be an effective diagnostic approach in SGA newborns

    Impact of rare variants in ARHGAP29 to the etiology of oral clefts: role of loss-of-function vs missense variants

    Get PDF
    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a prevalent, complex congenital malformation. Genome-wide association studies (GWAS) on NSCL/P have consistently identified association for the 1p22 region, in which ARHGAP29 has emerged as the main candidate gene. ARHGAP29 re-sequencing studies in NSCL/P patients have identified rare variants; however, their clinical impact is still unclear. In this study we identified 10 rare variants in ARHGAP29, including five missense, one in-frame deletion, and four loss-of-function (LoF) variants, in a cohort of 188 familial NSCL/P cases. A significant mutational burden was found for LoF (Sequence Kernel Association Test, p = 0.0005) but not for missense variants in ARHGAP29, suggesting that only LoF variants contribute to the etiology of NSCL/P. Penetrance was estimated as 59%, indicating that heterozygous LoF variants in ARHGAP29 confer a moderate risk to NSCL/P. The GWAS hits in IRF6 (rs642961) and 1p22 (rs560426 and rs4147811) do not seem to contribute to the penetrance of the phenotype, based on co-segregation analysis. Our data show that rare variants leading to haploinsufficiency of ARHGAP29 represent an important etiological clefting mechanism, and genetic testing for this gene might be taken into consideration in genetic counseling of familial cases

    The Prospects for Payment for Ecosystem Services (PES) in Vietnam: A Look at Three Payment Schemes

    Get PDF
    Global conservation discourses and practices increasingly rely on market-based solutions to fulfill the dual objective of forest conservation and economic development. Although varied, these interventions are premised on the assumption that natural resources are most effectively managed and preserved while benefiting livelihoods if the market-incentives of a liberalised economy are correctly in place. By examining three nationally supported payment for ecosystem service (PES) schemes in Vietnam we show how insecure land tenure, high transaction costs and high opportunity costs can undermine the long-term benefits of PES programmes for local households and, hence, potentially threaten their livelihood viability. In many cases, the income from PES programmes does not reach the poor because of political and economic constraints. Local elite capture of PES benefits through the monopolization of access to forestland and existing state forestry management are identified as key problems. We argue that as PES schemes create a market for ecosystem services, such markets must be understood not simply as bald economic exchanges between ‘rational actors’ but rather as exchanges embedded in particular socio-political and historical contexts to support the sustainable use of forest resources and local livelihoods in Vietnam

    The economic case for prioritizing governance over financial incentives in REDD+

    Get PDF
    This article contributes to the ongoing debate on the role of public policies and financial incentives in Reducing Emissions from Deforestation and forest Degradation (REDD+). It argues that the subordination of policies to results-based payments for emission reductions causes severe economic inefficiencies affecting the opportunity cost, transaction cost and economic rent of the programme. Such problems can be addressed by establishing sound procedural, land and financial governance at the national level, before REDD+ economic incentives are delivered at scale. Consideration is given to each governance dimension, the entry points for policy intervention and the impact on costs. International support must consider the financial and political cost of governance reforms, and use a pay-for-results ethos based on output and outcome indicators. This can be done in the readiness process but only if the latter’s legal force, scope, magnitude and time horizon are adequately reconsidered. In sum, the paper provides ammunition for the institutionalist argument that UNFCCC Parties must prioritise governance reform between now and the entry into force of the new climate agreement in 2020, and specific recommendations about how this can be done: only by doing so will they create the basis for the programme’s financial sustainability
    corecore