7 research outputs found

    Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin

    Get PDF
    Polymethyl methacrylate (PMMA) resins have commonly been used as a denture base material. However, denture bases may act as a reservoir for microorganisms and contribute to oral diseases in denture wearers. It is hypothesized that the 2-tert-butylaminoethyl methacrylate (TBAEMA) incorporated to acrylic resins should have antimicrobial activity related to the presence of amino groups on acrylic resin surface. OBJECTIVES: The objectives of this study were to evaluate the presence of amino groups on acrylic resin surface and the influence on flexural strength after incorporation of TBAEMA. MATERIAL AND METHODS: Six groups were divided according to the concentration of TBAEMA incorporated to acrylic resin (Lucitone 550): 0, 0.5, 1.0, 1.5, 1.75 and 2%. Specimens surface were evaluated by Electron Spectroscopy for Chemical Analysis (ESCA) to detect the presence of amino groups, represented by nitrogen ratios. Flexural strength of the specimens was tested and results were analyzed by ANOVA and Tukey's test (&#945;=0.05). RESULTS: Different nitrogen ratios were observed on specimen surfaces: 0, 0.13, 0.74, 0.66, 0.92 and 0.33% for groups 0, 0.5, 1.0, 1.5, 1.75, and 2%, respectively. Significant differences were found for flexural strength (p<0.001). The mean flexural strength values were 98.3±3.9, 93.3±3.2, 83.9±2.1, 82.8±5.2, 71.2±5.1 and 17.3±3.2 MPa for groups 0, 0.5, 1.0, 1.5, 1.75, and 2%, respectively. CONCLUSION: Within the limitations of this study, the incorporation of TBAEMA results in the presence of the potentially antimicrobial amino groups on specimen surfaces, but affect the flexural strength, depending on the concentration of TBAEMA

    Influence of artificial saliva in biofilm formation of Candida albicans in vitro

    No full text
    Due to the increase in life expectancy, new treatments have emerged which, although palliative, provide individuals with a better quality of life. Artificial saliva is a solution that contains substances that moisten a dry mouth, thus mimicking the role of saliva in lubricating the oral cavity and controlling the existing normal oral microbiota. This study aimed to assess the influence of commercially available artificial saliva on biofilm formation by Candida albicans. Artificial saliva I consists of carboxymethylcellulose, while artificial saliva II is composed of glucose oxidase, lactoferrin, lysozyme and lactoperoxidase. A control group used sterile distilled water. Microorganisms from the oral cavity were transferred to Sabouraud Dextrose Agar and incubated at 37°C for 24 hours. Colonies of Candida albicans were suspended in a sterile solution of NaCl 0.9%, and standardisation of the suspension to 106 cells/mL was achieved. The acrylic discs, immersed in artificial saliva and sterile distilled water, were placed in a 24-well plate containing 2 mL of Sabouraud Dextrose Broth plus 5% sucrose and 0.1 mL aliquot of the Candida albicans suspension. The plates were incubated at 37°C for 5 days, the discs were washed in 2 mL of 0.9% NaCl and placed into a tube containing 10 mL of 0.9% NaCl. After decimal dilutions, aliquots of 0.1 mL were seeded on Sabouraud Dextrose Agar and incubated at 37°C for 48 hours. Counts were reported as CFU/mL (Log10). A statistically significant reduction of 29.89% (1.45 CFU/mL) of Candida albicans was observed in saliva I when compared to saliva II (p = 0.002, considering p&#8804;0.05)
    corecore