237 research outputs found

    Non Alcoholic Fatty Liver Disease: non invasive markers of severity and new experimental treatments

    Get PDF
    Non Alcoholic Fatty Liver Disease (NAFLD) is a worldwide increasing disease but still many questions about its evolution, the need of a screening and the availability of effective specific treatments are open. Aims of this PhD project were: 1) the evaluation of NAFLD natural history in a subgroup of NAFLD affected diabetic patients enrolled during the daily clinical activity of a splenohepatology ecoDoppler laboratory in order to identify, if present, predictive factors of “evolutive NAFLD”; 2) the experimental evaluation, in High Fat Diet (HFD) fed rats, of the potential therapeutic effect of 3 molecules targeting respectively: a) lipid metabolism (Apolipoprotein A analogue compound -L4F), b) insulin sensitivity (peroxisome proliferator activated receptor delta agonist –PPARd agonist) c) endothelial function (EET Analog). We developed two studies: a clinical observational study and an experimental study. Clinical study: 100 patients with type 2 diabetes were evaluated as far as steatosis is concerned. Among them, 80 had sonographic signs of steatosis. There was no difference in the prevalence between male and female patients. 21 type 2 diabetic patients with liver steatosis were reevaluated after 6 years without any specific treatment. Liver steatosis increases only in less than 1/3 of non-obese diabetic patients and demonstrates that in the majority of them sonographic degree of steatosis improves or recovers concurrently with biohumoral parameters. The presence of increased levels of serum AST and ferritin and lower pulsatility index of haepatic artery seems to be correlated to a worse prognosis and may be used to identify those patients who deserve a higher surveillance. Experimental study: 30 male Wistar rats (4-5 weeks old, 150 grams body weight) were purchased from Charles River Laboratories. 24 rats have been fed with HFD for 8 weeks. After 8 weeks of diet animals have been divided in 4 groups: 7 untreated (HFD); 7 treated with L4F (L4F), 7 treated with PPARd agonist (PPARd) and 3 treated with EET Analog (EET). Treatments lasted 6 weeks. We demonstrate that HFD induced NAFLD reproduces splanchnic haemodynamic alteration of liver steatosis in humans and shows an activation of innate immune system also at early degree of steatosis without hepatic inflammation and fibrosis. The activation of innate immune system can be evaluated by the analysis of lipopolysaccharide (LPS) stimulated/unstimulated CC motif chemockine ligand 2 (CCL2) production in cultured peripheral blood mononuclear cells (PBMCs). PPARd agonist and L4F improved HFD induced liver steatosis and reduced CCL2 production in PBMCs but preserved the ability of PBMCs to react to LPS stimulation EETA administration didn’t improved liver steatosis and further decreased portal vein velocity and reduced the ability of PBMCs to react to LPS stimulation

    Role of HO/CO in the Control of Peripheral Circulation in Humans

    Get PDF
    Experimental studies show that the heme oxygenase/carbon monoxide system (HO/CO) plays an important role in the homeostasis of circulation and in the pathophysiology of hypertension. No data are available on its role in the control of peripheral circulation in humans. We evaluated the effects of inhibition of HO with stannous mesoporphyrin IX (SnMP) (200 μM) locally administered by iontophoresis, on human skin blood flow, evaluated by laser-Doppler flowmetry, in the presence and absence of nitric oxide synthase (NOS) inhibition with L-NG-Nitroarginine methyl ester (L-NAME) (100 μM). We also evaluated the effect of HO inhibition on vasodilatation induced by acetylcholine (ACh) and vasoconstriction caused by noradrenaline (NA). SnMP and L-NAME caused a similar 20–25% decrease in skin flow. After nitric oxide (NO) inhibition with L-NAME, HO inhibition with SnMP caused a further 20% decrease in skin perfusion. SnMP decreased vasodilatation induced by ACh by about 70%, while it did not affect vasoconstriction to NA. In conclusion, HO/CO participates in the control of peripheral circulation, independently from NO, and is involved in vasodilatation to ACh

    Harnessing NK Cells for Cancer Treatment

    Get PDF
    In the last years, natural killer (NK) cell-based immunotherapy has emerged as a promising therapeutic approach for solid tumors and hematological malignancies. NK cells are innate lymphocytes with an array of functional competences, including anti-cancer, anti-viral, and anti-graft-vs.-host disease potential. The intriguing idea of harnessing such potent innate immune system effectors for cancer treatment led to the development of clinical trials based on the adoptive therapy of NK cells or on the use of monoclonal antibodies targeting the main NK cell immune checkpoints. Indeed, checkpoint immunotherapy that targets inhibitory receptors of T cells, reversing their functional blocking, marked a breakthrough in anticancer therapy, opening new approaches for cancer immunotherapy and resulted in extensive research on immune checkpoints. However, the clinical efficacy of T cell-based immunotherapy presents a series of limitations, including the inability of T cells to recognize and kill HLA-Ineg tumor cells. For these reasons, new strategies for cancer immunotherapy are now focusing on NK cells. Blockade with NK cell checkpoint inhibitors that reverse their functional block may overcome the limitations of T cell-based immunotherapy, mainly against HLA-Ineg tumor targets. Here, we discuss recent anti-tumor approaches based on mAb-mediated blocking of immune checkpoints (either restricted to NK cells or shared with T cells), used either as a single agent or in combination with other compounds, that have demonstrated promising clinical responses in both solid tumors and hematological malignancie

    Diffuse axonal injury and oxidative stress: A comprehensive review

    Get PDF
    Traumatic brain injury (TBI) is one of the worldâ\u80\u99s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure

    Gaining insight on mitigation of rubeosis iridis by UPARANT in a mouse model associated with proliferative retinopathy

    Get PDF
    Proliferative retinopathies (PR) lead to an increase in neovascularization and inflammation factors, at times culminating in pathologic rubeosis iridis (RI). In mice, uveal puncture combined with injection of hypoxia-conditioned media mimics RI associated with proliferative retinopathies. Here, we investigated the effects of the urokinase plasminogen activator receptor (uPAR) antagonist-UPARANT-on the angiogenic and inflammatory processes that are dysregulated in this model. In addition, the effects of UPARANT were compared with those of anti-vascular endothelial growth factor (VEGF) therapies. Administration of UPARANT promptly decreased iris vasculature, while anti-VEGF effects were slower and less pronounced. Immunoblot and qPCR analysis suggested that UPARANT acts predominantly by reducing the upregulated inflammatory and extracellular matrix degradation responses. UPARANT appears to be more effective in comparison to anti-VEGF in the treatment of RI associated with PR in the murine model, by modulating multiple uPAR-associated signaling pathways. Furthermore, UPARANT effectiveness was maintained when systemically administered, which could open to novel improved therapies for proliferative ocular diseases, particularly those associated with PR. KEY MESSAGES: • Further evidence of UPARANT effectiveness in normalizing pathological iris neovascularization. • Both systemic and local administration of UPARANT reduce iris neovascularization in a model associated with proliferative retinopathies. • In the mouse models of rubeosis iridis associated with proliferative retinopathy, UPARANT displays stronger effects when compared with anti-vascular endothelial growth factor regimen

    Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model

    Get PDF
    Congenital diaphragmatic hernia (CDH) is a neonatal defect in which the diaphragm muscle does not develop properly, thereby raising abdominal organs into the thoracic cavity and impeding lung development and function. Large diaphragmatic defects require correction with prosthetic patches to close the malformation. This treatment leads to a consequent generation of unwelcomed mechanical stress in the repaired diaphragm and hernia recurrences, thereby resulting in high morbidity and significant mortality rates. We proposed a specific diaphragm-derived extracellular matrix (ECM) as a scaffold for the treatment of CDH. To address this strategy, we developed a new surgical CDH mouse model to test the ability of our tissue-specific patch to regenerate damaged diaphragms. Implantation of decellularized diaphragmatic ECM-derived patches demonstrated absence of rejection or hernia recurrence, in contrast to the performance of a commercially available synthetic material. Diaphragm-derived ECM was able to promote the generation of new blood vessels, boost long-term muscle regeneration, and recover host diaphragmatic function. In addition, using a GFP\u202f+\u202fSchwann cell mouse model, we identified re-innervation of implanted patches. These results demonstrated for the first time that implantation of a tissue-specific biologic scaffold is able to promote a regenerating diaphragm muscle and overcome issues commonly related to the standard use of prosthetic materials

    Case report: Novel FHR2 variants in atypical Hemolytic Uremic Syndrome: A case study of a translational medicine approach in renal transplantation

    Get PDF
    Atypical hemolytic–uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation. We report here the case of a 22-year-old man who developed a severe form of aHUS. Renal biopsy revealed thrombotic microangiopathy and features of chronic renal damage. Despite two eculizumab infusions, the patient remained dialysis dependent. Two novel rare variants, c.109G>A (p.E37K) and c.159 C>A (p.Y53*), were identified in the factor H-related 2 ( FHR2 ) gene, and western blot analysis revealed a significant reduction in the level of FHR2 protein in the patient’s serum. Although FHR2 involvement in complement 3 glomerulopathy has been reported previously, a role for FRH2 as a complement modulator has not yet been definitively shown. In addition, no cases of aHUS in individuals with FHR2 variants have been reported. Given the role of FHRs in the complement system and the fact that this patient was a candidate for a kidney transplant, we studied the relevance of low FHR2 plasma levels through a set of functional in vitro assays. The aim of our work was to determine if low FHR2 plasma levels could influence complement control at the endothelial surface with a view to identifying a therapeutic approach tailored to this specific patient. Interestingly, we observed that low FHR2 levels in the patient’s serum could induce complement activation, as well as C5b–9 deposition on human endothelial cells, and affected cell morphology. As C5b–9 deposition is a prerequisite for endothelial cell damage, these results suggest that extremely low FHR2 plasma levels increase the risk of aHUS. Given their ability to reduce C5b–9 deposition, recombinant FHR2 and eculizumab were tested in vitro and found to inhibit hemolysis and endothelial cell surface damage. Both molecules showed effective and comparable profiles. Based on these results, the patient underwent a kidney transplant, and received eculizumab as induction and maintenance therapy. Five years after transplantation, the patient remains in good general health, with stable graft function and no evidence of disease recurrence. To our knowledge, this is first reported case of an aHUS patient carrying FHR2 mutations and provides an example of a translational therapeutic approach in kidney transplantation

    ALLELE-SPECIFIC TRANSCRIPTIONAL ACTIVITY OF THE VARIABLE NUMBER OF TANDEM REPEATS OF THE INDUCIBLE NITRIC OXIDE SYNTHASE GENE IS ASSOCIATED WITH IDIOPATHIC ACHALASIA

    Get PDF
    Background: Polymorphisms of genes involved in the regulation of the immune response are risk factors for achalasia, but their contribution to disease pathogenesis is unknown. Nitric oxide is involved in both immune function and inhibitory neurotransmission. Objective: to assess the association and the functional relevance of the CCTTT inducible Nitric Oxide Synthase (NOS2) gene promoter polymorphism in achalasia. Methods: Genomic DNA was isolated from 181 achalasia patients and 220 controls. Genotyping of the (CCTTT)n repeats was performed by PCR and capillary electrophoresis, and data analyzed by considering the frequency of the different alleles. HT29 cells were transfected with iNOS luciferase promoter-reporter plasmids containing different (CCTTT)n. Results: The alleles’ distribution ranged from 7 to 18, with a peak frequency at 12 repeats. Analysis of the allele frequencies revealed that individuals carrying 10 and 13 CCTTT repeats were respectively less and more frequent in achalasia (OR 0.5, 95% CI 0.3-0.5 and OR 1.6, 95% CI 1-2.4, all p<0.05). Long repeats were also significantly associated with an earlier onset of the disease (OR 1.69, 95% CI 1.13-2.53, p=0.01). Transfection experiments’ revealed a similar allele-specific iNOS transcriptional activity. Conclusion: The functional polymorphism (CCTTT) of NOS2 promoter is associated with achalasia, likely by an allele-specific modulation of nitric oxide production

    PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression

    Get PDF
    Under physiological conditions, PD-1/PD-L1 interactions regulate unwanted over-reactions of immune cells and contribute to maintain peripheral tolerance. However, in tumor microenvironment, this interaction may greatly compromise the immune-mediated anti-tumor activity. PD-1 + NK cells have been detected in high percentage in peripheral blood and ascitic fluid of ovarian carcinoma patients. To acquire information on PD-1 expression and physiology in human NK cells, we analyzed whether PD-1 mRNA and protein are present in resting, surface PD-1 12 , NK cells from healthy donors. Both different splicing isoforms of PD-1 mRNA and a cytoplasmic pool of PD-1 protein were detected. Similar results were obtained also from both in vitro-activated and tumor-associated NK cells. PD-1 mRNA and protein were higher in CD56 dim than in CD56 bright NK cells. Confocal microscopy analyses revealed that PD-1 protein is present in virtually all NK cells analyzed. The present findings are compatible with a rapid surface expression of PD-1 in NK cells in response to appropriate, still undefined, stimuli
    • …
    corecore