42 research outputs found

    Letter From Commander and Chief John J. Pershing to Major General Edward F. McGlauchlin, Jr., March 29, 1919

    Get PDF
    Letter from Commander and Chief John J. Pershing to Major General Edward F. McGlauchlin, Jr. dated March 29, 1919. It summerizes the First Divisions military service during the war.https://digitalmaine.com/foss_241503/1004/thumbnail.jp

    Correspondence: WWI Letter Signed by John J. Pershing, France; March 26, 1919

    Get PDF
    Correspondence: WWI Letter Signed by John J. Pershing, France; March 26, 191

    Letter From John J. Pershing to Francis Mairs Huntington-Wilson, August 14, 1940

    Get PDF
    A typed letter from John J. Pershing addressed to Francis Mairs Huntington-Wilson, dated August 14, 1940. Within, Pershing agrees that public sentiment favors more American involvement in protecting Britain and the British fleet.https://digitalcommons.ursinus.edu/fmhw_secondworldwar_documents/1015/thumbnail.jp

    Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism

    Get PDF
    Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation, whereas increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.German Science Foundation (Grant FE1185)National Institutes of Health (U.S.)Glenn Foundation for Medical ResearchNational Institutes of Health (U.S.) (Grant 5-P50-090381-09)National Institutes of Health (U.S.) (Grant 5-P30-CA14051-39)Burroughs Wellcome FundSmith Family FoundationDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.) (Grant 1R01DK075850-01)National Institutes of Health (U.S.) (Grant 1R01CA160458-01A1

    Reconciling end-to-end and population concepts for marine ecosystems

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 83 (2010): 99-103, doi:10.1016/j.jmarsys.2010.06.006.The inherent complexities in the structure and dynamics of marine food webs have led to two major simplifying concepts, a species-centric approach focused on physical processes driving the population dynamics of single species and a trophic-centric approach emphasizing energy flows through broad functional groups from nutrient input to fish production. Here we review the two approaches and discuss their advantages and limitations. We suggest that these concepts are complementary: their applications involve different time scales and distinct aspects of population and community resilience, but their integration is necessary for ecosystem-based managementWe acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele) and NSF award OCE0217399 (D.J. Gifford)

    Visualizing variation within global pneumococcal sequence clusters (GPSCS) and country population snapshots to contextualize pneumococcal isolates

    Get PDF
    Knowledge of pneumococcal lineages, their geographic distribution and antibiotic resistance patterns, can give insights into global pneumococcal disease. We provide interactive bioinformatic outputs to explore such topics, aiming to increase dissemi-nation of genomic insights to the wider community, without the need for specialist training. We prepared 12 country-specific phylogenetic snapshots, and international phylogenetic snapshots of 73 common Global Pneumococcal Sequence Clusters (GPSCs) previously defined using PopPUNK, and present them in Microreact. Gene presence and absence defined using Roary, and recombination profiles derived from Gubbins are presented in Phandango for each GPSC. Temporal phylogenetic signal was assessed for each GPSC using BactDating. We provide examples of how such resources can be used. In our example use of a country-specific phylogenetic snapshot we determined that serotype 14 was observed in nine unrelated genetic backgrounds in South Africa. The international phylogenetic snapshot of GPSC9, in which most serotype 14 isolates from South Africa were observed, highlights that there were three independent sub-clusters represented by South African serotype 14 isolates. We estimated from the GPSC9-dated tree that the sub-clusters were each established in South Africa during the 1980s. We show how recombination plots allowed the identification of a 20 kb recombination spanning the capsular polysaccharide locus within GPSC97. This was consistent with a switch from serotype 6A to 19A estimated to have occured in the 1990s from the GPSC97-dated tree. Plots of gene presence/absence of resistance genes (tet, erm, cat) across the GPSC23 phylogeny were consistent with acquisition of a composite transposon. We estimated from the GPSC23-dated tree that the acquisition occurred between 1953 and 1975. Finally, we demonstrate the assignment of GPSC31 to 17 externally generated pneumococcal serotype 1 assemblies from Utah via Pathogenwatch. Most of the Utah isolates clustered within GPSC31 in a USA-specific clade with the most recent common ancestor estimated between 1958 and 1981. The resources we have provided can be used to explore to data, test hypothesis and generate new hypotheses. The accessible assignment of GPSCs allows others to contextualize their own collections beyond the data presented here.Fil: Gladstone, Rebecca A.. Wellcome Sanger Institute; Reino UnidoFil: Lo, Stephanie W.. Wellcome Sanger Institute; Reino UnidoFil: Goater, Richard. Wellcome Sanger Institute; Reino Unido. University of Oxford; Reino UnidoFil: Yeats, Corin. Wellcome Sanger Institute; Reino Unido. University of Oxford; Reino UnidoFil: Taylor, Ben. Wellcome Sanger Institute; Reino Unido. University of Oxford; Reino UnidoFil: Hadfield, James. Fred Hutchinson Cancer Research Center; Estados UnidosFil: Lees, John A.. Imperial College London; Reino UnidoFil: Croucher, Nicholas J.. Imperial College London; Reino UnidoFil: van Tonder, Andries. Wellcome Sanger Institute; Reino Unido. University of Cambridge; Estados UnidosFil: Bentley, Leon J.. Wellcome Sanger Institute; Reino UnidoFil: Quah, Fu Xiang. Wellcome Sanger Institute; Reino UnidoFil: Blaschke, Anne J.. University of Utah; Estados UnidosFil: Pershing, Nicole L.. University of Utah; Estados UnidosFil: Byington, Carrie L.. University of California; Estados UnidosFil: Balaji, Veeraraghavan. Christian Medical College; IndiaFil: Hryniewicz, Waleria. National Medicines Institute; PoloniaFil: Sigauque, Betuel. Instituto Nacional de Saude Maputo; MozambiqueFil: Ravikumar, K. L.. Kempegowda Institute Of Medical Sciences; IndiaFil: Grassi Almeida, Samanta Cristine. Adolfo Lutz Institute; BrasilFil: Ochoa, Theresa J.. Universidad Peruana Cayetano Heredia; PerúFil: Ho, Pak Leung. The University Of Hong Kong; Hong KongFil: du Plessis, Mignon. National Institute for Communicable Diseases; SudáfricaFil: Ndlangisa, Kedibone M.. National Institute for Communicable Diseases; SudáfricaFil: Cornick, Jennifer. Malawi liverpool wellcome Trust Clinical Research Programme; MalauiFil: Kwambana Adams, Brenda. Colegio Universitario de Londres; Reino Unido. Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine; GambiaFil: Benisty, Rachel. Ben Gurion University of the Negev; IsraelFil: Nzenze, Susan A.. University of the Witwatersrand; SudáfricaFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Hawkins, Paulina A.. Emory University; Estados UnidosFil: Faccone, Diego Francisco. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas. Área de Antimicrobianos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    End-to-end foodweb control of fish production on Georges Bank

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 66 (2009): 2223-2232, doi:10.1093/icesjms/fsp180.The ecosystem approach to management requires the productivity of individual fish stocks to be considered in the context of the entire ecosystem. In this paper, we derive an annual end-to-end budget for the Georges Bank ecosystem, based on data from the GLOBEC program and fisheries surveys for the years 1993-2002. We use this budget as the basis to construct scenarios that describe the consequences of various alterations in the Georges Bank trophic web: reduced nutrient input, increased benthic production, removal of carnivorous plankton such as jellyfish, and changes in species dominance within fish guilds. We calculate potential yields of cod and haddock for the different scenarios, and compare the results with historic catches and estimates of maximum sustainable yield (MSY) from recent stock assessments. The MSYs of cod and haddock can be met if the fish community is restructured to make them the dominant species in their respective diet-defined guilds. A return to the balance of fish species present in the first half of the 20th century would depend on an increase in the fraction of primary production going to the benthos rather than to plankton. Estimates of energy flux through the Georges Bank trophic web indicate that rebuilding the principal groundfish species to their MSY levels requires restructuring of the fish community and repartitioning of energy within the food web.We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele) and NSF award OCE0217399 (D.J. Gifford and J.S. Collie)

    Endangered right whales enhance primary productivity in the bay of fundy

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4 + and PO4 3- release rates from the feces of North Atlantic right whales (Eubalaena glacialis), a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface- Active groups (SAGs), which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4 + within 24 hours of defecation. Phosphorous was also abundant in fecal samples: Initial release rates of PO4 3- were higher than for NH4 +, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO4 3- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4 + released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals), they once numbered about 14,000 and likely played a substantial role in recycling nutrients in areas where they gathered to feed and mate. Even though the NH4 + released from fresh whale fecal material is a small fraction of total whale fecal nitrogen, and recognizing the fact that the additional nitrogen released in whale urine would be difficult to measure in a field study, the results of this study support the idea that the distinctive isotopic signature of the released NH4 + could be used to provide a conservative estimate of the contribution of the whale pump to primary productivity in coastal regions where whales congregate

    Visualizing variation within Global Pneumococcal Sequence Clusters (GPSCs) and country population snapshots to contextualize pneumococcal isolates.

    Get PDF
    Knowledge of pneumococcal lineages, their geographic distribution and antibiotic resistance patterns, can give insights into global pneumococcal disease. We provide interactive bioinformatic outputs to explore such topics, aiming to increase dissemination of genomic insights to the wider community, without the need for specialist training. We prepared 12 country-specific phylogenetic snapshots, and international phylogenetic snapshots of 73 common Global Pneumococcal Sequence Clusters (GPSCs) previously defined using PopPUNK, and present them in Microreact. Gene presence and absence defined using Roary, and recombination profiles derived from Gubbins are presented in Phandango for each GPSC. Temporal phylogenetic signal was assessed for each GPSC using BactDating. We provide examples of how such resources can be used. In our example use of a country-specific phylogenetic snapshot we determined that serotype 14 was observed in nine unrelated genetic backgrounds in South Africa. The international phylogenetic snapshot of GPSC9, in which most serotype 14 isolates from South Africa were observed, highlights that there were three independent sub-clusters represented by South African serotype 14 isolates. We estimated from the GPSC9-dated tree that the sub-clusters were each established in South Africa during the 1980s. We show how recombination plots allowed the identification of a 20 kb recombination spanning the capsular polysaccharide locus within GPSC97. This was consistent with a switch from serotype 6A to 19A estimated to have occured in the 1990s from the GPSC97-dated tree. Plots of gene presence/absence of resistance genes (tet, erm, cat) across the GPSC23 phylogeny were consistent with acquisition of a composite transposon. We estimated from the GPSC23-dated tree that the acquisition occurred between 1953 and 1975. Finally, we demonstrate the assignment of GPSC31 to 17 externally generated pneumococcal serotype 1 assemblies from Utah via Pathogenwatch. Most of the Utah isolates clustered within GPSC31 in a USA-specific clade with the most recent common ancestor estimated between 1958 and 1981. The resources we have provided can be used to explore to data, test hypothesis and generate new hypotheses. The accessible assignment of GPSCs allows others to contextualize their own collections beyond the data presented here

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
    corecore