57 research outputs found
Influence of interstellar and atmospheric extinction on light curves of eclipsing binaries
Interstellar and atmospheric extinctions redden the observational photometric
data and they should be handled rigorously. This paper simulates the effect of
reddening for the modest case of two main sequence T1 = 6500K and T2 = 5500K
components of a detached eclipsing binary system. It is shown that simply
subtracting a constant from measured magnitudes (the approach often used in the
field of eclipsing binaries) to account for reddening should be avoided.
Simplified treatment of the reddening introduces systematics that reaches
\~0.01mag for the simulated case, but can be as high as ~0.2mag for e.g.
B8V--K4III systems. With rigorous treatment, it is possible to uniquely
determine the color excess value E(B-V) from multi-color photometric light
curves of eclipsing binaries.Comment: 6 pages, 9 figures, 1 table, Kopal's Binary Star Legacy conference
contribution (Litomysl 2004), to be published by Kluwer A&S
Building the cosmic distance scale: from Hipparcos to Gaia
Hipparcos, the first ever experiment of global astrometry, was launched by
ESA in 1989 and its results published in 1997 (Perryman et al., Astron.
Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho
catalogues, ESA SP-1200, 1997). A new reduction was later performed using an
improved satellite attitude reconstruction leading to an improved accuracy for
stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys.
439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007).
The Hipparcos Catalogue provided an extended dataset of very accurate
astrometric data (positions, trigonometric parallaxes and proper motions),
enlarging by two orders of magnitude the quantity and quality of distance
determinations and luminosity calibrations. The availability of more than 20000
stars with a trigonometric parallax known to better than 10% opened the way to
a drastic revision of our 3-D knowledge of the solar neighbourhood and to a
renewal of the calibration of many distance indicators and age estimations. The
prospects opened by Gaia, the next ESA cornerstone, planned for launch in June
2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more
dramatic: a billion objects with systematic and quasi simultaneous astrometric,
spectrophotometric and spectroscopic observations, about 150 million stars with
expected distances to better than 10%, all over the Galaxy. All stellar
distance indicators, in very large numbers, will be directly measured,
providing a direct calibration of their luminosity and making possible detailed
studies of the impacts of various effects linked to chemical element
abundances, age or cluster membership. With the help of simulations of the data
expected from Gaia, obtained from the mission simulator developed by DPAC, we
will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance
scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF,
Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in
Astrophysics & Space Scienc
The Elusive Optical Jets
Paper freely available at http://cdsads.u-strasbg.fr/cgi-bin/nph-iarticle_query?1991AJ....101...88F&data_type=PDF_HIGH&type=PRINTERImaging observations in the U band of eight radio galaxies are presented. We find no optical counterpart to the radio jets. For the three radio galaxies 3C 147, 3C 279 and 3C 433, we show that the radio to optical spectral index of the jet is significantly higher than the typical values found in the three best known optical jets (M87, 3C 273 and 3C 66B). We conclude that the cut-off frequencies are lower than Hz in these cases. For the 3C 31 jet, our data are consistent with the radio to optical spectral index being comparable to the typical values. This result is in contradiction with the detection of the optical jet in the B band by Butcher et al (1980). Finally, the lower limit on the radio to optical spectral index we obtain for the four other radio jets of our sample is still consistent with the typical values
HD 98800: A Unique Stellar System of Post-T Tauri Stars
HD 98800 is a system of four stars, and it has a large infrared excess that is thought to be due to a dust disk within the system. In this paper we present new astrometric observations made with Hipparcos, as well as photometry from Hubble Space Telescope WFPC2 images. Combining these observations and reanalyzing previous work allow us to estimate the age and masses of the stars in the system. Uncertainty in these ages and masses results from uncertainty in the temperatures of the stars and any reddening they may have. We find that HD 98800 is most probably about 10 Myr old, although it may be as young as 5 Myr or as old as 20 Myr. The stars in HD 98800 appear to have metallicities that are about solar. An age of 10 Myr means that HD 98800 is a member of the post-T Tauri class of objects, and we argue that the stars in HD 98800 can help us understand why post-T Tauris have been so elusive. HD 98800 may have formed in the Centaurus star-forming region, but it is extraordinary in being so young and yet so far from where it was born
High-Speed Energy-Resolved STJ Photometry of the Eclipsing Binary UZ For
We present high time-resolution optical photometry of the eclipsing binary UZ
For using a superconducting tunnel junction (STJ) device, a photon-counting
array detector with intrinsic energy resolution. Three eclipses of the 18
mag 126.5 min orbital binary were observed using a array of Tantalum
STJs at the 4.2-m William Herschel Telescope on La Palma. The detector
presently provides individual photon arrival time accuracy to about 5 s,
and a wavelength resolution of about 60 nm at 500 nm, with each array element
capable of counting up to 5000 photons s. The data allow us to
place accurate constraints on the accretion geometry from our time- and
spectrally-resolved monitoring, especially of the eclipse ingress and egress.
We find that there are two small accretion regions, located close to the poles
of the white dwarf. The positions of these are accurately constrained, and show
little movement from eclipse to eclipse, even over a number of years. The
colour of the emission from the two regions appears similar, although their
X-ray properties are known to be significantly different: we argue that the
usual accretion shock may be absent at the non-X-ray emitting region, and
instead the flow here interacts directly with the white dwarf surface;
alternatively, a special grazing occultation of this region is required. There
is no evidence for any quasi-periodic oscillations on time-scales of the order
of seconds, consistent with relatively stable cyclotron cooling in each
accretion region.Comment: Accepted by MNRAS: 11 pages, 8 figure
Spectroscopy of high proper motion stars in the ground--based UV
Based on high quality spectral data (spectral resolution R>60000) within the
wavelength range of 3550-5000 AA we determined main parameters (effective
temperature, surface gravity, microturbulent velocity, and chemical element
abundances including heavy metals from Sr to Dy) for 14 metal-deficient G-K
stars with large proper motions. The stars we studied have a wide range of
metallicity: [Fe/H]=-0.3 \div -2.9. Abundances of Mg, Al, Sr and Ba were
calculated with non-LTE line-formation effects accounted for. Abundances both
of the radioactive element Th and r-process element Eu were determined using
synthetic spectrum calculations. We selected stars that belong to different
galactic populations according to the kinematical criterion and parameters
determined by us. We found that the studied stars with large proper motions
refer to different components of the Galaxy: thin, thick disks and halo. The
chemical composition of the star BD+80 245 located far from the galactic plane
agrees with its belonging to the accreted halo. For the giant HD115444 we
obtained [Fe/H]=-2.91, underabundance of Mn, overabundance of heavy metals from
Ba to Dy, and, especially high excess of the r-process element Europium:
[Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars,
HD115444 belongs to the disc population according to its kinematic parameters.Comment: 16 pages, 4 figures, 5 tables, "UV Universe-2010 (2nd NUVA Symposium)
conference
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
The Local Bubble and Interstellar Material Near the Sun
The properties of interstellar matter (ISM) at the Sun are regulated by our
location with respect to the Local Bubble (LB) void in the ISM. The LB is
bounded by associations of massive stars and fossil supernovae that have
disrupted natal ISM and driven intermediate velocity ISM into the LB interior
void. The Sun is located in such a driven ISM parcel. The Local Fluff has a
bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center
of the gas and dust ring formed by the Loop I supernova remnant interaction
with the LB. When the ram pressure of the LIC is included in the total LIC
pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC
appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring
Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews
(in press
Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth
During the solar journey through galactic space, variations in the physical
properties of the surrounding interstellar medium (ISM) modify the heliosphere
and modulate the flux of galactic cosmic rays (GCR) at the surface of the
Earth, with consequences for the terrestrial record of cosmogenic
radionuclides. One phenomenon that needs studying is the effect on cosmogenic
isotope production of changing anomalous cosmic ray fluxes at Earth due to
variable interstellar ionizations. The possible range of interstellar ram
pressures and ionization levels in the low density solar environment generate
dramatically different possible heliosphere configurations, with a wide range
of particle fluxes of interstellar neutrals, their secondary products, and GCRs
arriving at Earth. Simple models of the distribution and densities of ISM in
the downwind direction give cloud transition timescales that can be directly
compared with cosmogenic radionuclide geologic records. Both the interstellar
data and cosmogenic radionuclide data are consistent with cloud transitions
during the Holocene, with large and assumption-dependent uncertainties. The
geomagnetic timeline derived from cosmic ray fluxes at Earth may require
adjustment to account for the disappearance of anomalous cosmic rays when the
Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review
Asteroseismology of red giants & galactic archaeology
Red-giant stars are low- to intermediate-mass (~M)
stars that have exhausted hydrogen in the core. These extended, cool and hence
red stars are key targets for stellar evolution studies as well as galactic
studies for several reasons: a) many stars go through a red-giant phase; b) red
giants are intrinsically bright; c) large stellar internal structure changes as
well as changes in surface chemical abundances take place over relatively short
time; d) red-giant stars exhibit global intrinsic oscillations. Due to their
large number and intrinsic brightness it is possible to observe many of these
stars up to large distances. Furthermore, the global intrinsic oscillations
provide a means to discern red-giant stars in the pre-helium core burning from
the ones in the helium core burning phase and provide an estimate of stellar
ages, a key ingredient for galactic studies. In this lecture I will first
discuss some physical phenomena that play a role in red-giant stars and several
phases of red-giant evolution. Then, I will provide some details about
asteroseismology -- the study of the internal structure of stars through their
intrinsic oscillations -- of red-giant stars. I will conclude by discussing
galactic archaeology -- the study of the formation and evolution of the Milky
Way by reconstructing its past from its current constituents -- and the role
red-giant stars can play in that.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
- …