19,118 research outputs found

    Pressure study of nematicity and quantum criticality in Sr3_3Ru2_2O7_7 for an in-plane field

    Get PDF
    We study the relationship between the nematic phases of Sr3_3Ru2_2O7_7 and quantum criticality. At ambient pressure, one nematic phase is associated with a metamagnetic quantum critical end point (QCEP) when the applied magnetic field is near the \textit{c}-axis. We show, however, that this metamagnetic transition does not produce the same nematic signatures when the QCEP is reached by hydrostatic pressure with the field applied in the \textit{ab}-plane. Moreover, a second nematic phase, that is seen for field applied in the \textit{ab}-plane close to, but not right at, a second metamagnetic anomaly, persists with minimal change to the highest applied pressure, 16.55 kbar. Taken together our results suggest that metamagnetic quantum criticality may not be necessary for the formation of a nematic phase in Sr3_3Ru2_2O7_7

    Similarity Renormalization Group for Nucleon-Nucleon Interactions

    Get PDF
    The similarity renormalization group (SRG) is based on unitary transformations that suppress off-diagonal matrix elements, forcing the hamiltonian towards a band-diagonal form. A simple SRG transformation applied to nucleon-nucleon interactions leads to greatly improved convergence properties while preserving observables, and provides a method to consistently evolve many-body potentials and other operators.Comment: 5 pages, 6 figures (8 figure files); references updated and acknowledgment adde

    Modeling Agglomeration of Dust Particles in Plasma

    Full text link
    The charge on an aggregate immersed in a plasma environment distributes itself over the aggregate's surface; this can be approximated theoretically by assuming a multipole distribution. The dipole-dipole (or higher order) charge interactions between fractal aggregates lead to rotations of the grains as they interact. Other properties of the dust grains also influence the agglomeration process, such as the monomer shape (spherical or ellipsoidal) or the presence of magnetic material. Finally, the plasma and grain properties also determine the morphology of the resultant aggregates. Porous and fluffy aggregates are more strongly coupled to the gas, leading to reduced collisional velocities, and greater collisional cross sections. These factors in turn can determine the growth rate of the aggregates and evolution of the dust cloud. This paper gives an overview of the numerical and experimental methods used to study dust agglomeration at CASPER and highlights some recent results

    Perturbative Tamm-Dancoff Renormalization

    Full text link
    A new two-step renormalization procedure is proposed. In the first step, the effects of high-energy states are considered in the conventional (Feynman) perturbation theory. In the second step, the coupling to many-body states is eliminated by a similarity transformation. The resultant effective Hamiltonian contains only interactions which do not change particle number. It is subject to numerical diagonalization. We apply the general procedure to a simple example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure

    Haemoglobin and size dependent constraints on swimbladder inflation in fish larvae

    Get PDF
    In developmental studies of fish species (especially physostomians) it could be demonstrated, that the lack of haemoglobin during larval and juvenile stages is a relatively common phenomenon. Generally it is linked with body translucency. In representatives of the families Galaxiidae, Osmeridae and Clupeidae, partly reared, partly observed immediately after being caught in the wild, it turned out, that this condition coincides with a considerable delay in swimbladder inflation. To determine the moment of its first inflation, larvae placed in a hermetic chamber were observed under a dissecting microscope. While lowering the pressure, the expanding swimbladder showed whether or not its content is really gaseous. The reason postulated to be responsible for the delayed inflation is that larvae lacking haemoglobin do not have the possibility of oxygen transport to their buoyancy organ by means of the blood. Apart of this, capillarity force calculations and body force estimations show that with decreasing size the constraints linked with surface tension increase overproportionally. While in larger sized larvae like trout we could demonstrate inflation by swallowing air, in species with small larvae this was not the case. Below a certain size, even in physostomians, the ductus pneumaticus is no alternative to the blood pathway for swimbladder inflation

    The NMR of High Temperature Superconductors without Anti-Ferromagnetic Spin Fluctuations

    Full text link
    A microscopic theory for the NMR anomalies of the planar Cu and O sites in superconducting La_1.85Sr_0.15CuO_4 is presented that quantitatively explains the observations without the need to invoke anit-ferromagnetic spin fluctuations on the planar Cu sites and its significant discrepancy with the observed incommensurate neutron spin fluctuations. The theory is derived from the recently published ab-initio band structure calculations that correct LDA computations tendency to overestimate the self-coulomb repulsion for the half-filled Cu d_x2-y2 orbital for these ionic systems. The new band structure leads to two bands at the Fermi level with holes in the Cu d_z2 and apical O p_z orbitals in addition to the standard Cu d_x2-y2 and planar O p_sigma orbitals. This band structure is part of a new theory for the cuprates that explains a broad range of experiments and is based upon the formation of Cooper pairs comprised of a k up spin electron from one band and a -k down spin electron from another band (Interband Pairing Model).Comment: In Press, Journal of Physical Chemistry. See also http://www.firstprinciples.com. Minor changes to references and figure readabilit

    Alcoholism and the Eighth Amendment: Powell v. Texas

    Get PDF

    Context Dependence, MOPs,WHIMs and procedures Recanati and Kaplan on Cognitive Aspects in Semantics

    Get PDF
    After presenting Kripke’s criticism to Frege’s ideas on context dependence of thoughts, I present two recent attempts of considering cognitive aspects of context dependent expressions inside a truth conditional pragmatics or semantics: Recanati’s non-descriptive modes of presentation (MOPs) and Kaplan’s ways of having in mind (WHIMs). After analysing the two attempts and verifying which answers they should give to the problem discussed by Kripke, I suggest a possible interpretation of these attempts: to insert a procedural or algorithmic level in semantic representations of indexicals. That a function may be computed by different procedures might suggest new possibilities of integrating contextual cognitive aspects in model theoretic semanti

    Initial bound state studies in light-front QCD

    Full text link
    We present the first numerical QCD bound state calculation based on a renormalization group-improved light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling, and it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-time-like Schrodinger equation. This is solved for quark-antiquark constituent states, and we obtain a set of self-consistent parameters by fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include

    A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation

    Full text link
    Refraction at a smooth interface is accompanied by momentum transfer normal to the interface. We show that corrugating an initially smooth, totally reflecting, non-metallic interface provides a momentum kick parallel to the surface, which can be used to refract light negatively or positively. This new mechanism of negative refraction is demonstrated by visible light and microwave experiments on grisms (grating-prisms). Single-beam all-angle-negative-refraction is achieved by incorporating a surface grating on a flat multilayered material. This negative refraction mechanism is used to create a new optical device, a grating lens. A plano-concave grating lens is demonstrated to focus plane microwaves to a point image. These results show that customized surface engineering can be used to achieve negative refraction even though the bulk material has positive refractive index. The surface periodicity provides a tunable parameter to control beam propagation leading to novel optical and microwave devices.Comment: 6 pages, 7 figures in RevTex forma
    • …
    corecore