3,251 research outputs found
Recommended from our members
Unraveling How Candida albicans Forms Sexual Biofilms.
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These "conventional" biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized "sexual" biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans
Senior Recital
Program listing performers and works performe
Noncoding RNAs and Duchenne muscular dystrophy
Noncoding RNAs (ncRNAs) such as miRNAs and long noncoding RNAs modulate gene transcription in response to environmental stressors and other stimuli. A role for ncRNAs in muscle pathologies has been demonstrated and further evidence suggests that ncRNAs also play a role in Duchenne muscular dystrophy (DMD). Studies investigating the differential expression of miRNAs in biological fluids between DMD patients and models of dystrophin deficiency (the MDX mouse model, canine models of DMD) and controls have been published, as these have a role in fibrosis. Long noncoding RNAs are differentially expressed in DMD patients and may, in part, have a mechanism of action via targeting of miRNAs. Although many of these recent findings need to be confirmed, ncRNAs may prove to be useful as potential biomarkers of disease. However, their use as therapeutic targets in DMD remains unclear
Prognostic Tools for Early Mortality in Hemorrhagic Stroke: Systematic Review and Meta-Analysis
Background and Purpose: Several risk scores have been developed to predict mortality in intracerebral hemorrhage (ICH). We aimed to systematically determine the performance of published prognostic tools. Methods: We searched MEDLINE and EMBASE for prognostic models (published between 2004 and April 2014) used in predicting early mortality (<6 months) after ICH. We evaluated the discrimination performance of the tools through a random-effects meta-analysis of the area under the receiver operating characteristic curve (AUC) or c-statistic. We evaluated the following components of the study validity: study design, collection of prognostic variables, treatment pathways, and missing data. Results: We identified 11 articles (involving 41,555 patients) reporting on the accuracy of 12 different tools for predicting mortality in ICH. Most studies were either retrospective or post-hoc analyses of prospectively collected data; all but one produced validation data. The Hemphill-ICH score had the largest number of validation cohorts (9 studies involving 3,819 patients) within our systematic review and showed good performance in 4 countries, with a pooled AUC of 0.80 [95% confidence interval (CI)=0.77-0.85]. We identified several modified versions of the Hemphill-ICH score, with the ICH-Grading Scale (GS) score appearing to be the most promising variant, with a pooled AUC across four studies of 0.87 (95% CI=0.84-0.90). Subgroup testing found statistically significant differences between the AUCs obtained in studies involving Hemphill-ICH and ICH-GS scores (p=0.01). Conclusions: Our meta-analysis evaluated the performance of 12 ICH prognostic tools and found greater supporting evidence for 2 models (Hemphill-ICH and ICH-GS), with generally good performance overall
BET bromodomains regulate transforming growth factor-beta-induced proliferation and cytokine release in asthmatic airway smooth muscle
Airway smooth muscle (ASM) mass is increased in asthma, and ASM cells from patients with asthma are hyperproliferative and release more IL-6 and CXCL8. The BET (bromo- and extra-terminal) family of proteins (Brd2, Brd3, and Brd4) govern the assembly of histone acetylation-dependent chromatin complexes. We have examined whether they modulate proliferation and cytokine expression in asthmatic ASM cells by studying the effect of BET bromodomain mimics JQ1/SGCBD01 and I-BET762. ASM cells from healthy individuals and nonsevere and severe asthmatics were pretreated with JQ1/SGCBD01 and I-BET762 prior to stimulation with FCS and TGF-β. Proliferation was measured by BrdU incorporation. IL-6 and CXCL8 release was measured by ELISA, and mRNA expression was measured by quantitative RT-PCR. ChIP using a specific anti-Brd4 antibody and PCR primers directed against the transcriptional start site of IL-6 and CXCL8 gene promoters was performed. Neither JQ1/SGCBD01 nor I-BET762 had any effect on ASM cell viability. JQ1/SGCBD01 and I-BET762 inhibited FCS+TGF-β-induced ASM cell proliferation and IL-6 and CXCL8 release in healthy individuals (≥ 30 nm) and in nonsevere and severe asthma patients (≥100 nm), with the latter requiring higher concentrations of these mimics. JQ1/SGCBD01 reduced Brd4 binding to IL8 and IL6 promoters induced by FCS+TGF-β. Mimics of BET bromodomains inhibit aberrant ASM cell proliferation and inflammation with lesser efficiency in those from asthmatic patients. They may be effective in reducing airway remodeling in asthma
- …