156 research outputs found
Sparse Spike Coding : applications of Neuroscience to the processing of natural images
If modern computers are sometimes superior to humans in some specialized
tasks such as playing chess or browsing a large database, they can't beat the
efficiency of biological vision for such simple tasks as recognizing and
following an object in a complex cluttered background. We present in this paper
our attempt at outlining the dynamical, parallel and event-based representation
for vision in the architecture of the central nervous system. We will
illustrate this on static natural images by showing that in a signal matching
framework, a L/LN (linear/non-linear) cascade may efficiently transform a
sensory signal into a neural spiking signal and we will apply this framework to
a model retina. However, this code gets redundant when using an over-complete
basis as is necessary for modeling the primary visual cortex: we therefore
optimize the efficiency cost by increasing the sparseness of the code. This is
implemented by propagating and canceling redundant information using lateral
interactions. We compare the efficiency of this representation in terms of
compression as the reconstruction quality as a function of the coding length.
This will correspond to a modification of the Matching Pursuit algorithm where
the ArgMax function is optimized for competition, or Competition Optimized
Matching Pursuit (COMP). We will in particular focus on bridging neuroscience
and image processing and on the advantages of such an interdisciplinary
approach.Comment: http://incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Perrinet08spi
Visual motion processing and human tracking behavior
The accurate visual tracking of a moving object is a human fundamental skill
that allows to reduce the relative slip and instability of the object's image
on the retina, thus granting a stable, high-quality vision. In order to
optimize tracking performance across time, a quick estimate of the object's
global motion properties needs to be fed to the oculomotor system and
dynamically updated. Concurrently, performance can be greatly improved in terms
of latency and accuracy by taking into account predictive cues, especially
under variable conditions of visibility and in presence of ambiguous retinal
information. Here, we review several recent studies focusing on the integration
of retinal and extra-retinal information for the control of human smooth
pursuit.By dynamically probing the tracking performance with well established
paradigms in the visual perception and oculomotor literature we provide the
basis to test theoretical hypotheses within the framework of dynamic
probabilistic inference. We will in particular present the applications of
these results in light of state-of-the-art computer vision algorithms
Accurate detection of spiking motifs in multi-unit raster plots
Recently, interest has grown in exploring the hypothesis that neural activity
conveys information through precise spiking motifs. To investigate this
phenomenon, various algorithms have been proposed to detect such motifs in
Single Unit Activity (SUA) recorded from populations of neurons. In this study,
we present a novel detection model based on the inversion of a generative model
of raster plot synthesis. Using this generative model, we derive an optimal
detection procedure that takes the form of logistic regression combined with
temporal convolution. A key advantage of this model is its differentiability,
which allows us to formulate a supervised learning approach using a gradient
descent on the binary cross-entropy loss. To assess the model's ability to
detect spiking motifs in synthetic data, we first perform numerical
evaluations. This analysis highlights the advantages of using spiking motifs
over traditional firing rate based population codes. We then successfully
demonstrate that our learning method can recover synthetically generated
spiking motifs, indicating its potential for further applications. In the
future, we aim to extend this method to real neurobiological data, where the
ground truth is unknown, to explore and detect spiking motifs in a more natural
and biologically relevant context
Analyzing cortical network dynamics with respect to different connectivity assumptions
ISBN : 978-2-9532965-0-1Current studies of cortical network dynamics are usually based on purely random wiring. Generally, these studies are focused on a local scale, where about 10 percent of all possible connections are realized. Neuronal connections in the cortex, however, show a more complex spatial pattern composed of local and long-range patchy connections. Here, we ask to what extent the assumption of such specific geometric traits influences the resulting dynamical behavior of network models. Analyzing the characteristic measures describing spiking neuronal networks (e.g., firing rate, coefficient of variation, correlation coefficient), we ascertain and compare the dynamical state spaces of different types of networks. To include long-range connections, we enlarge the spatial scale, resulting in a much sparser connectivity than what is usually assumed. Similar to previous studies, we can distinguish between different dynamical states (e.g., synchronous regular firing), depending on the external input rate and the numerical relation between excitatory and inhibitory synaptic weights. Yet, local couplings in such very sparsely connected networks seem to induce specific correlations and require another regularity measure than the coefficient of variation
Biologically Inspired Dynamic Textures for Probing Motion Perception
Perception is often described as a predictive process based on an optimal
inference with respect to a generative model. We study here the principled
construction of a generative model specifically crafted to probe motion
perception. In that context, we first provide an axiomatic, biologically-driven
derivation of the model. This model synthesizes random dynamic textures which
are defined by stationary Gaussian distributions obtained by the random
aggregation of warped patterns. Importantly, we show that this model can
equivalently be described as a stochastic partial differential equation. Using
this characterization of motion in images, it allows us to recast motion-energy
models into a principled Bayesian inference framework. Finally, we apply these
textures in order to psychophysically probe speed perception in humans. In this
framework, while the likelihood is derived from the generative model, the prior
is estimated from the observed results and accounts for the perceptual bias in
a principled fashion.Comment: Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS), Dec 2015, Montreal, Canad
Role of homeostasis in learning sparse representations
Neurons in the input layer of primary visual cortex in primates develop
edge-like receptive fields. One approach to understanding the emergence of this
response is to state that neural activity has to efficiently represent sensory
data with respect to the statistics of natural scenes. Furthermore, it is
believed that such an efficient coding is achieved using a competition across
neurons so as to generate a sparse representation, that is, where a relatively
small number of neurons are simultaneously active. Indeed, different models of
sparse coding, coupled with Hebbian learning and homeostasis, have been
proposed that successfully match the observed emergent response. However, the
specific role of homeostasis in learning such sparse representations is still
largely unknown. By quantitatively assessing the efficiency of the neural
representation during learning, we derive a cooperative homeostasis mechanism
that optimally tunes the competition between neurons within the sparse coding
algorithm. We apply this homeostasis while learning small patches taken from
natural images and compare its efficiency with state-of-the-art algorithms.
Results show that while different sparse coding algorithms give similar coding
results, the homeostasis provides an optimal balance for the representation of
natural images within the population of neurons. Competition in sparse coding
is optimized when it is fair. By contributing to optimizing statistical
competition across neurons, homeostasis is crucial in providing a more
efficient solution to the emergence of independent components
Feature detection using spikes: the greedy approach
A goal of low-level neural processes is to build an efficient code extracting
the relevant information from the sensory input. It is believed that this is
implemented in cortical areas by elementary inferential computations
dynamically extracting the most likely parameters corresponding to the sensory
signal. We explore here a neuro-mimetic feed-forward model of the primary
visual area (VI) solving this problem in the case where the signal may be
described by a robust linear generative model. This model uses an over-complete
dictionary of primitives which provides a distributed probabilistic
representation of input features. Relying on an efficiency criterion, we derive
an algorithm as an approximate solution which uses incremental greedy inference
processes. This algorithm is similar to 'Matching Pursuit' and mimics the
parallel architecture of neural computations. We propose here a simple
implementation using a network of spiking integrate-and-fire neurons which
communicate using lateral interactions. Numerical simulations show that this
Sparse Spike Coding strategy provides an efficient model for representing
visual data from a set of natural images. Even though it is simplistic, this
transformation of spatial data into a spatio-temporal pattern of binary events
provides an accurate description of some complex neural patterns observed in
the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing
the underlying hypotheses (linear model, uniform prior, gaussian noise
model). A parallel with the parallel and event-based nature of neural
computations is explored and we show application to modelling Primary Visual
Cortex / image processsing.
http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau
Edge co-occurrences can account for rapid categorization of natural versus animal images
International audienceMaking a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization. We first extracted the edges from images using a scale-space analysis coupled with a sparse coding algorithm. We then computed the "association field" for different categories (natural, man-made, or containing an animal) by computing the statistics of edge co-occurrences. These differed strongly, with animal images having more curved configurations. We show that this geometry alone is sufficient for categorization, and that the pattern of errors made by humans is consistent with this procedure. Because these statistics could be measured as early as the primary visual cortex, the results challenge widely held assumptions about the flow of computations in the visual system. The results also suggest new algorithms for image classification and signal processing that exploit correlations between low-level structure and the underlying semantic category
Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception
Choosing an appropriate set of stimuli is essential to characterize the
response of a sensory system to a particular functional dimension, such as the
eye movement following the motion of a visual scene. Here, we describe a
framework to generate random texture movies with controlled information
content, i.e., Motion Clouds. These stimuli are defined using a generative
model that is based on controlled experimental parametrization. We show that
Motion Clouds correspond to dense mixing of localized moving gratings with
random positions. Their global envelope is similar to natural-like stimulation
with an approximate full-field translation corresponding to a retinal slip. We
describe the construction of these stimuli mathematically and propose an
open-source Python-based implementation. Examples of the use of this framework
are shown. We also propose extensions to other modalities such as color vision,
touch, and audition
- …