6 research outputs found

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Palladium complexes bearing κ²-\u3ci\u3eN\u3c/i\u3e,\u3ci\u3eN\u3c/i\u3e and κ³-\u3ci\u3eN\u3c/i\u3e,\u3ci\u3eN\u3c/i\u3e,\u3ci\u3eO\u3c/i\u3e pendant amine bis(phenolate) ligands

    No full text
    The synthesis and characterization of ten new palladium(II) amine bis(phenolate) complexes is reported. Solution and single-crystal X-ray diffraction studies reveal the presence of both κ2-N,N and κ3-N,N,O binding modes in these square planar complexes. For complexes with sterically less demanding phenolate donors, addition of external acidic or basic reagents allows for the selective masking of a coordination site at Pd. Complexes bearing bulky cumyl substituents on phenolate donors exhibited unusual 1H NMR spectroscopic features that are consistent with an anagostic interaction with the palladium center. Computational analysis at the ωB97X-D/LAN2LDZ level of theory supported the assertion that such an anagostic interaction may play a role in stabilizing κ2 complexes bearing a cumyl-substituted amine bis(phenolate) ligand. X-ray crystallographic data for H21a-PdCl2, H22a-PdCl2, H1b-PdCl, H2b-PdCl, H1d-PdCl, and H1e-PdCl are reported

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.This article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014.952696.</p

    Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    No full text
    corecore