10,158 research outputs found

    Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn

    Get PDF
    We report an innovative high pressure method combining the diamond anvil cell device with the technique of picosecond ultrasonics. Such an approach allows to accurately measure sound velocity and attenuation of solids and liquids under pressure of tens of GPa, overcoming all the drawbacks of traditional techniques. The power of this new experimental technique is demonstrated in studies of lattice dynamics, stability domain and relaxation process in a metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon and argon. Application to the study of defect-induced lattice stability in AlPdMn up to 30 GPa is proposed. The present work has potential for application in areas ranging from fundamental problems in physics of solid and liquid state, which in turn could be beneficial for various other scientific fields as Earth and planetary science or material research

    Two-body anticorrelation in a harmonically trapped ideal Bose gas

    Get PDF
    We predict the existence of a dip below unity in the second-order coherence function of a partially condensed ideal Bose gas in harmonic confinement, signaling the anticorrelation of density fluctuations in the sample. The dip in the second-order coherence function is revealed in a canonical-ensemble calculation, corresponding to a system with fixed total number of particles. In a grand-canonical ensemble description, this dip is obscured by the occupation-number fluctuation catastrophe of the ideal Bose gas. The anticorrelation is most pronounced in highly anisotropic trap geometries containing small particle numbers. We explain the fundamental physical mechanism which underlies this phenomenon, and its relevance to experiments on interacting Bose gases.Comment: 10 pages, 5 figures. v2: Minor changes and corrections to figures and text. To appear in PR

    An optical study of interdiffusion in ZnSe/ZnCdSe

    Get PDF
    Copyright 1996 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Applied Physics Letters 69, 1579 (1996) and may be found at

    Toxic effects of estradiol E2 on development in the European tree frog (Hyla arborea)

    Get PDF
    Estrogenic hormones are a major environmental threat to aquatic wildlife. Here we report chronic toxic effects of exposure to the naturally excreted estrogen, 17β-estradiol (E2), on the larval and subadult development of the European tree frog (Hyla arborea), by an experimental setting and long-term monitoring. In addition to the documented impact on sexual development and mating behavior, the general toxicity of human-released estrogens may contribute to global amphibian declines

    First-principles quantum dynamics for fermions: Application to molecular dissociation

    Full text link
    We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can be simulated using a Gaussian phase-space representation method. In particular, we consider the application of the mixed fermion-boson model to ultracold quantum gases and simulate the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick's factorization scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in clear departures from pairing mean-field theories. As a first-principles approach, the method provides benchmarking of approximate approaches and can be used to validate dynamical probes for characterizing strongly correlated phases of fermionic systems.Comment: Final published versio

    Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    Full text link
    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies

    Performance of a deterministic source of entangled photonic qubits

    Get PDF
    We study the possible limitations and sources of decoherence in the scheme for the deterministic generation of polarization-entangled photons, recently proposed by Gheri et al. [K. M. Gheri et al., Phys. Rev. A 58, R2627 (1998)], based on an appropriately driven single atom trapped within an optical cavity. We consider in particular the effects of laser intensity fluctuations, photon losses, and atomic motion.Comment: 10 pages, 6 figure

    The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

    Get PDF
    For two given ω\omega-terms α\alpha and β\beta, the word problem for ω\omega-terms over a variety V\boldsymbol{\mathrm{V}} asks whether α=β\alpha=\beta in all monoids in V\boldsymbol{\mathrm{V}}. We show that the word problem for ω\omega-terms over each level of the Trotter-Weil Hierarchy is decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy, our approach yields an algorithm in nondeterministic logarithmic space (NL). In addition, we provide deterministic polynomial time algorithms which are more efficient than straightforward translations of the NL-algorithms. As an application of our results, we show that separability by the so-called corners of the Trotter-Weil Hierarchy is witnessed by ω\omega-terms (this property is also known as ω\omega-reducibility). In particular, the separation problem for the corners of the Trotter-Weil Hierarchy is decidable

    PDS 144: the first confirmed Herbig Ae-Herbig Ae wide binary

    Get PDF
    PDS 144 is a pair of Herbig Ae stars that are separated by 5.'' 35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 degrees inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 degrees +/- 6 degrees on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 degrees +/- 7 degrees. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 degrees +/- 9 degrees. This degree of misalignment is similar to that seen in T Tauri wide binaries.Peer reviewe

    Characterizing Young Brown Dwarfs using Low Resolution Near-IR Spectra

    Get PDF
    We present near-infrared (1.0-2.4 micron) spectra confirming the youth and cool effective temperatures of 6 brown dwarfs and low mass stars with circumstellar disks toward the Chamaeleon II and Ophiuchus star forming regions. The spectrum of one of our objects indicates that it has a spectral type of ~L1, making it one of the latest spectral type young brown dwarfs identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and giant stars, we define a 1.49-1.56 micron H2O index capable of determining spectral type to within 1 sub-type, independent of gravity. We have also defined an index based on the 1.14 micron sodium feature that is sensitive to gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14 micron Na index can be used to distinguish young cluster members (t <~ 5 Myr) from young field dwarfs, both of which may have the triangular H-band continuum shape which persists for at least tens of Myr. Using effective temperatures determined from the spectral types of our objects along with luminosities derived from near and mid-infrared photometry, we place our objects on the H-R diagram and overlay evolutionary models to estimate the masses and ages of our young sources. Three of our sources have inferred ages (t ~= 10-30 Myr) significantly older than the median stellar age of their parent clouds (1-3 Myr). For these three objects, we derive masses ~3 times greater than expected for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources. The large discrepancies in the inferred masses and ages determined using two separate, yet reasonable methods, emphasize the need for caution when deriving or exploiting brown dwarf mass and age estimates.Comment: 11 pages, Accepted to Ap
    corecore