13,474 research outputs found
Interview with Melinda Perrin
An oral history interview with Melinda Perrin about her career in the Texas Medical Center and work on the board of Hermann Hospital and later Memorial Hermann Healthcare System.
Melinda Hill Perrin was born into a family known for the leadership it has provided both the city of Houston and the state of Texas. Her father John Hill served as the Texas’ secretary of state, then attorney general and finally Chief Justice of the state Supreme Court. Her work in the community and the non-profit sector led to her selection as a member of the Board of Hermann Hospital during its most controversial period. She was board chair when Hermann merged with the Memorial Health Care System in 1997, a perilous project that’s success meant the strengthening of two of the city’s most important healthcare institution. That work gives her a unique view of Houston, its institutions and the future of healthcare not only locally but across the nation. She is a volunteer and her willingness to provide leadership in that role makes her a role model for women in every walk of life
Improved version of the eikonal model for absorbing spherical particles
We present a new expression of the scattering amplitude, valid for spherical
absorbing objects, which leads to an improved version of the eikonal method
outside the diffraction region. Limitations of this method are discussed and
numerical results are presented and compared successfully with the Mie theory.Comment: 7 pages, postscript figures available on cpt.univ-mrs.fr, to appear
in J. Mod. Optic
Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn
We report an innovative high pressure method combining the diamond anvil cell
device with the technique of picosecond ultrasonics. Such an approach allows to
accurately measure sound velocity and attenuation of solids and liquids under
pressure of tens of GPa, overcoming all the drawbacks of traditional
techniques. The power of this new experimental technique is demonstrated in
studies of lattice dynamics, stability domain and relaxation process in a
metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon
and argon. Application to the study of defect-induced lattice stability in
AlPdMn up to 30 GPa is proposed. The present work has potential for application
in areas ranging from fundamental problems in physics of solid and liquid
state, which in turn could be beneficial for various other scientific fields as
Earth and planetary science or material research
Droplets move over viscoelastic substrates by surfing a ridge
Liquid drops on soft solids generate strong deformations below the contact
line, resulting from a balance of capillary and elastic forces. The movement of
these drops may cause strong, potentially singular dissipation in the soft
solid. Here we show that a drop on a soft substrate moves by surfing a ridge:
the initially flat solid surface is deformed into a sharp ridge whose
orientation angle depends on the contact line velocity. We measure this angle
for water on a silicone gel and develop a theory based on the substrate
rheology. We quantitatively recover the dynamic contact angle and provide a
mechanism for stick-slip motion when a drop is forced strongly: the contact
line depins and slides down the wetting ridge, forming a new one after a
transient. We anticipate that our theory will have implications in problems
such as self-organization of cell tissues or the design of capillarity-based
microrheometers.Comment: 9 pages, 5 figure
The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments
There has been great interest in applying the results of statistical
mechanics to single molecule experiements. Recent work has highlighted
so-called non-equilibrium work-energy relations and Fluctuation Theorems which
take on an equilibrium-like (time independent) form. Here I give a very simple
heuristic example where an equilibrium result (the barometric law for colloidal
particles) arises from theory describing the {\em thermodynamically}
non-equilibrium phenomenon of a single colloidal particle falling through
solution due to gravity. This simple result arises from the fact that the
particle, even while falling, is in {\em mechanical} equilibrium (gravitational
force equal the viscous drag force) at every instant. The results are
generalized by appeal to the central limit theorem. The resulting time
independent equations that hold for thermodynamically non-equilibrium (and even
non-stationary) processes offer great possibilities for rapid determination of
thermodynamic parameters from single molecule experiments.Comment: 6 page
A case study of spin- Heisenberg model in a triangular lattice
We study the spin- model in a triangular lattice in presence of a uniaxial
anisotropy field using a Cluster Mean-Field approach (CMF). The interplay
between antiferromagnetic exchange, lattice geometry and anisotropy forces
Gutzwiller mean-field approaches to fail in a certain region of the phase
diagram. There, the CMF yields two supersolid (SS) phases compatible with those
present in the spin- XXZ model onto which the spin- system maps.
Between these two SS phases, the three-sublattice order is broken and the
results of the CMF depend heavily on the geometry and size of the cluster. We
discuss the possible presence of a spin liquid in this region.Comment: 7 pages, 4 figures, RevTeX 4. The abstract and conclusions have been
modified and the manuscript has been extende
Critical Rotation of an Annular Superfluid Bose Gas
We analyze the excitation spectrum of a superfluid Bose-Einstein condensate
rotating in a ring trap. We identify two important branches of the spectrum
related to outer and inner edge surface modes that lead to the instability of
the superfluid. Depending on the initial circulation of the annular condensate,
either the outer or the inner modes become first unstable. This instability is
crucially related to the superfluid nature of the rotating gas. In particular
we point out the existence of a maximal circulation above which the superflow
decays spontaneously, which cannot be explained by invoking the average speed
of sound.Comment: 5 pages, 5 figures, PRA Rapid Com
Collective Atomic Recoil Laser as a synchronization transition
We consider here a model previously introduced to describe the collective
behavior of an ensemble of cold atoms interacting with a coherent
electromagnetic field. The atomic motion along the self-generated
spatially-periodic force field can be interpreted as the rotation of a phase
oscillator. This suggests a relationship with synchronization transitions
occurring in globally coupled rotators. In fact, we show that whenever the
field dynamics can be adiabatically eliminated, the model reduces to a
self-consistent equation for the probability distribution of the atomic
"phases". In this limit, there exists a formal equivalence with the Kuramoto
model, though with important differences in the self-consistency conditions.
Depending on the field-cavity detuning, we show that the onset of synchronized
behavior may occur through either a first- or second-order phase transition.
Furthermore, we find a secondary threshold, above which a periodic self-pulsing
regime sets in, that is immediately followed by the unlocking of the
forward-field frequency. At yet higher, but still experimentally meaningful,
input intensities, irregular, chaotic oscillations may eventually appear.
Finally, we derive a simpler model, involving only five scalar variables, which
is able to reproduce the entire phenomenology exhibited by the original model
Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the galactic centre black hole
The galactic central black hole Sgr A* exhibits outbursts of radiation in the
near infrared (so-called IR flares). One model of these events consists in a
hotspot orbiting on the innermost stable circular orbit (ISCO) of the hole.
These outbursts can be used as a probe of the central gravitational potential.
One main scientific goal of the second generation VLTI instrument GRAVITY is to
observe these flares astrometrically. Here, the astrometric precision of
GRAVITY is investigated in imaging mode, which consists in analysing the image
computed from the interferometric data. The capability of the instrument to put
in light the motion of a hotspot orbiting on the ISCO of our central black hole
is then discussed.
We find that GRAVITY's astrometric precision for a single star in imaging
mode is smaller than the Schwarzschild radius of Sgr A*. The instrument can
also demonstrate that a body orbiting on the last stable orbit of the black
hole is indeed moving. It yields a typical size of the orbit, if the source is
as bright as m_K=14.
These results show that GRAVITY allows one to study the close environment of
Sgr A*. Having access to the ISCO of the central massive black hole probably
allows constraining general relativity in its strong regime. Moreover, if the
hotspot model is appropriate, the black hole spin can be constrained.Comment: 13 pages, 11 figures ; accepted by MNRA
Knowledge-based Virtual Reconstruction of Museum Artifacts
Within the framework of heritage preservation, 3D scanning and modeling for heritage documentation has increased significantly in recent years, mainly due to the evolution of laser and image-based techniques, modeling software, powerful computers and virtual reality. 3D laser acquisition constitutes a real development opportunity for 3D modeling based previously on theoretical data. The representation of the object information rely on the knowledge of its historic and theoretical frame to reconstitute a posteriori its previous states.
This project proposes an approach dealing with data extraction based on architectural knowledge and Laser statement informing measurements, the whole leading to 3D reconstruction. The experimented Khmer objects are exposed at Guimet museum in Paris. The purpose of this digital modeling meets the need of exploitable models for simulation projects, prototyping, exhibitions, promoting cultural tourism and particularly for archiving against any likely disaster and as an aided tool for the formulation of virtual museum concept
- …