164 research outputs found

    Collagenolytic and gelatinolytic matrix metalloproteinases and their inhibitors in basal cell carcinoma of skin: comparison with normal skin

    Get PDF
    Tissue from 54 histologically-identified basal cell carcinomas of the skin was obtained at surgery and assayed using a combination of functional and immunochemical procedures for matrix metalloproteinases (MMPs) with collagenolytic activity and for MMPs with gelatinolytic activity. Collagenolytic enzymes included MMP-1 (interstitial collagenase), MMP-8 (neutrophil collagenase) and MMP-13 (collagenase-3). Gelatinolytic enzymes included MMP-2 (72-kDa gelatinase A/type IV collagenase) and MMP-9 (92-kDa gelatinase B/type IV collagenase). Inhibitors of MMP activity including tissue inhibitor of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2) were also assessed. All three collagenases and both gelatinases were detected immunochemically. MMP-1 appeared to be responsible for most of the functional collagenolytic activity while gelatinolytic activity reflected both MMP-2 and MMP-9. MMP inhibitor activity was also present, and appeared, based on immunochemical procedures, to reflect the presence of TIMP-1 but not TIMP-2. As a group, tumours identified as having aggressive-growth histologic patterns were not distinguishable from basal cell carcinomas with less aggressive-growth histologic patterns. In normal skin, the same MMPs were detected by immunochemical means. However, only low to undetectable levels of collagenolytic and gelatinolytic activities were present. In contrast, MMP inhibitor activity was comparable to that seen in tumour tissue. In previous studies we have shown that exposure of normal skin to epidermal growth factor in organ culture induces MMP up-regulation and activation. This treatment concomitantly induces stromal invasion by the epithelium (Varani et al (1995) Am J Pathol146: 210–217; Zeigler et al (1996 b) Invasion Metastasis16: 11–18). Taken together with these previous data, the present findings allow us to conclude that the same profile of MMP/MMP inhibitors that is associated with stromal invasion in the organ culture model is expressed endogenously in basal cell carcinomas of skin. © 2000 Cancer Research Campaig

    Test-time Unsupervised Domain Adaptation

    Full text link
    Convolutional neural networks trained on publicly available medical imaging datasets (source domain) rarely generalise to different scanners or acquisition protocols (target domain). This motivates the active field of domain adaptation. While some approaches to the problem require labeled data from the target domain, others adopt an unsupervised approach to domain adaptation (UDA). Evaluating UDA methods consists of measuring the model's ability to generalise to unseen data in the target domain. In this work, we argue that this is not as useful as adapting to the test set directly. We therefore propose an evaluation framework where we perform test-time UDA on each subject separately. We show that models adapted to a specific target subject from the target domain outperform a domain adaptation method which has seen more data of the target domain but not this specific target subject. This result supports the thesis that unsupervised domain adaptation should be used at test-time, even if only using a single target-domain subjectComment: Accepted at MICCAI 202

    Scribble-based Domain Adaptation via Co-segmentation

    Full text link
    Although deep convolutional networks have reached state-of-the-art performance in many medical image segmentation tasks, they have typically demonstrated poor generalisation capability. To be able to generalise from one domain (e.g. one imaging modality) to another, domain adaptation has to be performed. While supervised methods may lead to good performance, they require to fully annotate additional data which may not be an option in practice. In contrast, unsupervised methods don't need additional annotations but are usually unstable and hard to train. In this work, we propose a novel weakly-supervised method. Instead of requiring detailed but time-consuming annotations, scribbles on the target domain are used to perform domain adaptation. This paper introduces a new formulation of domain adaptation based on structured learning and co-segmentation. Our method is easy to train, thanks to the introduction of a regularised loss. The framework is validated on Vestibular Schwannoma segmentation (T1 to T2 scans). Our proposed method outperforms unsupervised approaches and achieves comparable performance to a fully-supervised approach.Comment: Accepted at MICCAI 202

    PO-357 SREBP1 drives cell-autonomous cytoskeletal changes by KRT80 remodelling during ERα breast cancer progression

    Get PDF
    Introduction Approximately 30% of oestrogen receptor α positive (ERα) breast cancer patients progress to invasive metastatic disease despite adjuvant treatment with targeted endocrine therapies. The relationship between acquisition of drug resistance and invasive potential is poorly understood. Currently, invasive behaviour is thought to be driven mainly by epithelial to mesenchymal transition. Material and methods MCF7 cell line and derived resistant clones were used for this study. MCF7 Tamoxifen Resistant (MCF7TR) and LTED (Long Term Oestrogen Deprivation) were derived from MCF7 upon one-year Tamoxifen or oestrogen deprivation, respectively. LTED combination treatments were also used (LTEDT and LTEDF). Additionally, we used T47D and T47D-LTED. Stable cell lines were generated for both KRT80 over-expression and knockdown. 3D organoids invasion assay, immunofluorescence, confocal microscopy, RNA-seq, ChIP-seq, RT-qPCR and Western blot were performed. Seventy-five human breast specimens and ten metastatic lymph nodes were selected with the approval of Imperial College Healthcare NHS Trust Tissue Bank. Twenty women with suspected breast cancer were prospectively recruited and radiological exam using shear wave ultrasound was used to determine tissue stiffness in the normal and peri-tumoral stroma, and suspected lesion. Results and discussions In this study, we show that cells that acquire resistance to aromatase inhibitors (AI) undergo active cytoskeleton re-organisation via Keratin 80 (KRT80) and F-Actin remodelling. These features directly drive the invasive phenotype. Mechanistically, we show that this process is driven by epigenetic reprogramming at the type II keratin locus (chromosome 12) leading to Keratin 80 (KRT80) up-regulation. Reprogramming is dependent on de novo SREBP1 binding to a single enhancer that is activated upon chronic AI treatment. AI-treated patients show KRT80 cytoskeletal re-organisation and an increased number of KRT80 positive cells at relapse. We find that KRT80 activation and redeployment leads to increased F-actin deposition and focal adhesion. Additionally, we show that KRT80 manipulation directly contributes to changes in cellular stiffness and invasive potential. In agreement, shear-wave elasticity imaging of prospective patients show that KRT80 levels correlate with stiffer tumours in vivo. Conclusion Collectively, our data uncover an unexpected and potentially targetable link between epigenetic reprogramming and cytoskeletal changes promoting cell invasion

    Impact of COVID-19 on 1-year survival outcomes in hepatocellular carcinoma: a multicenter cohort study

    Get PDF
    INTRODUCTION: The COVID-19 pandemic has caused severe disruption of healthcare services worldwide and interrupted patients' access to essential services. During the first lockdown, many healthcare services were shut to all but emergencies. In this study, we aimed to determine the immediate and long-term indirect impact of COVID-19 health services utilisation on hepatocellular cancer (HCC) outcomes. METHODS: A prospective cohort study was conducted from 1 March 2020 until 30 June 2020, correlating to the first wave of the COVID-19 pandemic. Patients were enrolled from tertiary hospitals in the UK and Germany with dedicated HCC management services. All patients with current or past HCC who were discussed at a multidisciplinary meeting (MDM) were identified. Any delay to treatment (DTT) and the effect on survival at one year were reported. RESULTS: The median time to receipt of therapy following MDM discussion was 49 days. Patients with Barcelona Clinic Liver Cancer (BCLC) stages-A/B disease were more likely to experience DTT. Significant delays across all treatments for HCC were observed, but delay was most marked for those undergoing curative therapies. Even though severe delays were observed in curative HCC treatments, this did not translate into reduced survival in patients. CONCLUSION: Interruption of routine healthcare services because of the COVID-19 pandemic caused severe delays in HCC treatment. However, DTT did not translate to reduced survival. Longer follow is important given the delay in therapy in those receiving curative therapy

    Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Get PDF
    BACKGROUND: Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. METHODS: Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. RESULTS: HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1. CONCLUSION: This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells

    Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells

    Get PDF
    Background: Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has antiinflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results: Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-c and an increase in IL-5 production, respectively. Conclusions: Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, fo

    Collision sellar lesions: experience with eight cases and review of the literature

    Get PDF
    The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
    corecore