175 research outputs found

    Energetic analysis and optimal design of a CHP plant in a frozen food processing factory through a dynamical simulation model

    Get PDF
    The proper design of cogeneration plants requires the choice of the technologies that best fits the ratio between heating and power loads. In this paper, a dynamical procedure of selecting and dimensioning a cogeneration plant, using deep and detailed energy, exergy and economic analysis of the entire production process of a frozen food production factory is proposed. The results highlight that a design method, based on a dynamic simulation, optimizes the energy efficiency of the food processing plant involved in the experimental test. Indeed, by considering the overall efficiency of the CHP + National grid system, the energy efficiency is 6% higher in the case of dynamic compared to a static design, resulting in better overall use of resources with a possible lower level of environmental impact. Moreover, the CHP plant designed with the proposed method generates electrical energy which appropriately matches that required by the process, with a surplus/deficit less than 4%, while the classic method never covers the amount required and results in a deficit greater than 20%. Finally, the annual savings of the solution derived from the dynamic method is 12% higher than that obtained with a traditional design technique. Considering the greater absolute cost of the cogeneration plant, this dynamic approach results in more profitable annual investment margins for the company

    Italian immunization calendar implementation: Time to optimize number of vaccination appointments?

    Get PDF
    In the Italian vaccination schedule, at least six vaccination appointments are scheduled in the first year of life. This implies more discomfort for both the patient and the parents. This was particularly evident during the COVID-19 pandemic, during which several appointments were missed. A UK experience with three injectable vaccines and an oral one co-administered at the same appointment (4-in-1) at 2 and 4 months of age showed interesting results. The vaccination coverage was high, consistent with previous practice, and no relevant increase in adverse events was reported. Translating the UK experience into the Italian context would not be immediate, due to several organizational and social issues. Nevertheless, this option warrants some further considerations, which are discussed in this manuscript

    Characterization of the most frequent ATP7B mutation causing Wilson disease in hepatocytes from patient induced pluripotent stem cells

    Get PDF
    H1069Q substitution represents the most frequent mutation of the copper transporter ATP7B causing Wilson disease in Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes but moves in response to copper overload to the endo-lysosomal compartment to support copper excretion via bile canaliculi. In heterologous or hepatoma-derived cell lines, overexpressed ATP7B-H1069Q is strongly retained in the ER and fails to move to the post-Golgi sites, resulting in toxic copper accumulation. However, this pathogenic mechanism has never been tested in patients' hepatocytes, while animal models recapitulating this form of WD are still lacking. To reach this goal, we have reprogrammed skin fibroblasts of homozygous ATP7B-H1069Q patients into induced pluripotent stem cells and differentiated them into hepatocyte-like cells. Surprisingly, in HLCs we found one third of ATP7B-H1069Q localized in the Golgi complex and able to move to the endo-lysosomal compartment upon copper stimulation. However, despite normal mRNA levels, the expression of the mutant protein was only 20% compared to the control because of endoplasmic reticulum-associated degradation. These results pinpoint rapid degradation as the major cause for loss of ATP7B function in H1069Q patients, and thus as the primary target for designing therapeutic strategies to rescue ATP7B-H1069Q function

    A Mystery Unraveled: Non-tumorigenic pluripotent stem cells in human adult tissues

    Get PDF
    Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of 10 stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and 15 exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known 20 of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discussing both mesenchymal and various reported populations of pluripotent stem cells, and finally, delving into Muse cells and what sets them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are 25 efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-ATcells and their potential impact on the field of regenerative medicine and cell therapy.Fil: Simerman, Ariel A.. University of California; Estados UnidosFil: Perone, Marcelo Javier. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; ArgentinaFil: Gimeno, Maria Laura. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires; ArgentinaFil: Dumesic, Daniel A.. University of California; Estados UnidosFil: Chazenblak, Gregorio D.. University of California; Estados Unido

    Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy

    Get PDF
    Exon skipping is an effective strategy for the treatment of many Duchenne Muscular Dystrophy (DMD) mutations. Natural exon skipping observed in several DMD cases can help in identifying novel therapeutic tools. Here, we show a DMD study case where the lack of a splicing factor (Celf2a), which results in exon skipping and dystrophin rescue, is due to a maternally inherited trans-generational epigenetic silencing. We found that the study case and his mother express a repressive long non-coding RNA, DUXAP8, whose presence correlates with silencing of the Celf2a coding region. We also demonstrate that DUXAP8 expression is lost upon cell reprogramming and that, upon induction of iPSCs into myoblasts, Celf2a expression is recovered leading to the loss of exon skipping and loss of dystrophin synthesis. Finally, CRISPR/Cas9 inactivation of the splicing factor Celf2a was proven to ameliorate the pathological state in other DMD backgrounds establishing Celf2a ablation or inactivation as a novel therapeutic approach for the treatment of Duchenne Muscular Dystrophy

    Dépistage de l’infection à SARS-CoV-2 chez les voyageurs - Quelle approche pour évaluer le risque de transmis [SARS-CoV-2 screening in travelers: what approach to assess transmission risk ?]

    Get PDF
    Before a trip, a screening for SARS-CoV-2 infection by RT-PCR is often required and raises the problem of detection of residual viral RNA at distance from the acute infection (post-Covid). At the University Hospital of Geneva, we developed an expertise to distinguish acute from post-Covid infections. Between October and December 2020, 30% of the people tested positive were able to travel because the result corresponded to post-Covid and 65% were put in isolation because of an acute infection with a risk of transmission. To overcome the detection of residual viral RNA by RT-PCR, a rapid antigenic test would be an interesting and less expensive alternative. It could also be performed a few hours before departure

    Adherence and resource use among patients treated with biologic drugs : findings from BEETLE study

    Get PDF
    Systemic administration of anti-tumor necrosis factor alpha (anti-TNF alpha) leads to an anti-inflammatory and joint protective effect in pathologies such as rheumatoid arthritis, psoriasis, and Crohn's disease. The aim of this study was to assess adherence to therapy, persistence in treatment (no switches or interruptions), and consumption of care resources (drugs, outpatient services, hospitalizations)

    COMPUTER-CONTROLLED GAS CHROMATOGRAPH CAPABLE OF ''REAL-TIME'' READOUT OF HIGH-PRECISION DATA.

    Get PDF
    A gas chromatograph has been assembled which provides computer control of sample injection, column temperature, and flow rate, plus direct computer readout of inlet pressure, mass flow rate, and detector response. Data processing yields, in real-time, a standard deviation of less than 0.05% in retention time, which is comparable to previous results obtained using an off-line computer. However, corrected retention volumes determined in real-time had a standard deviation of about 0.4% which reflected primarily the uncertainty in flow measurement

    Design and in vitro study of a dual drug-loaded delivery system produced by electrospinning for the treatment of acute injuries of the central nervous system

    Get PDF
    Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibuloaded micro (diameter circa 0.95–1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(L-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells—OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform

    Collision sellar lesions: experience with eight cases and review of the literature

    Get PDF
    The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
    corecore