19 research outputs found

    In utero protein restriction causes growth delay and alters sperm parameters in adult male rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of <it>in utero </it>protein restriction on sexual development of rat male offspring were evaluated in the present study.</p> <p>Methods</p> <p><it>Pregnant </it>Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of <it>in utero </it>protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05.</p> <p>Results</p> <p>We found that <it>in utero </it>protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC.</p> <p>Conclusions</p> <p>In conclusion, <it>in utero </it>protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.</p

    Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats

    Get PDF
    Background: A suboptimal intrauterine environment may have a detrimental effect on gonadal development and thereby increases the risk for reproductive disorders and infertility in adult life. Here, we used uncontrolled maternal diabetes as a model to provoke pre- and perinatal growth restriction and evaluate the sexual development of rat male offspring.Methods: Maternal diabetes was induced in the dams through administration of a single i.v. dose of 40 mg/kg streptozotocin, 7 days before mating. Female rats presenting glycemic levels above 200 mg/dL after the induction were selected for the experiment. The male offspring was analyzed at different phases of sexual development, i.e., peripuberty, postpuberty and adulthood.Results: Body weight and blood glucose levels of pups, on the third postnatal day, were lower in the offspring of diabetic dams compared to controls. Maternal diabetes also provoked delayed testicular descent and preputial separation. In the offspring of diabetic dams the weight of reproductive organs at 40, 60 and 90 days-old was lower, as well as sperm reserves and sperm transit time through the epididymis. However the plasma testosterone levels were not different among experimental groups.Conclusions: It is difficult to isolate the effects directly from diabetes and those from IUGR. Although the exposure to hyperglycemic environment during prenatal life and lactation delayed the onset of puberty in male rats, the IUGR, in the studied model, did not influenced the structural organization of the male gonads of the offspring at any point during sexual development. However the decrease in sperm reserves in epididymal cauda and the acceleration in sperm transit time in this portion of epididymis may lead to an impairment of sperm quality and fertility potential in these animals. Additional studies are needed in attempt to investigate the fertility of animals with intrauterine growth restriction by maternal diabetes and possible multigenerational effects

    Diet-induced Obesity In Rats Leads To A Decrease In Sperm Motility.

    Get PDF
    Obesity is rapidly becoming a worldwide epidemic that affects children and adults. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. Thus, the aim of the present study was to investigate the effect of high-fat diet-induced obesity on male reproductive parameters. In a first experiment, male Wistar rats were fed a high-fat diet (HFD) or standard chow (SD) for 15, 30 or 45 weeks, after which they were evaluated by adiposity index, serum leptin levels, reproductive organ weights and sperm counts. In a second experiment, rats received HFD or SD only for 15 weeks, long enough to cause obesity. Sexual hormones and sexual behavior were evaluated in these animals, as well as fertility after natural mating. Another group of rats was submitted to motility analysis and fertility evaluation after in utero insemination. After 15, 30 or 45 weeks, HFD-fed animals presented significant increases in obesity index and serum leptin levels. Reproductive organ weights and sperm counts in the testis and epididymis were similar between the two groups at all timepoints studied. Sexual behavior was not altered by the diet regimen, and HFD fertility after natural mating was also similar to SD-fed animals. Intergroup testosterone levels were also comparable, but estradiol levels were increased in HFD rats. Furthermore, sperm quality was reduced in HFD animals as evidenced by their decreased percentage of sperm with progressive movement. This altered motility parameter was followed by a trend toward reduction in fertility potential after artificial in utero insemination. The results reported herein showed that obesity can affect sperm quality, by reducing sperm motility, without affecting other sperm parameters. The low sperm quality caused a slight reduction in fertility potential, showing that obesity may lead to impairment in male fertility.93

    Avaliação sistêmica do setor industrial brasileiro: 1995-2009

    Get PDF
    Resumo O presente artigo busca avaliar o setor industrial sob uma ótica distinta da que tem sido utilizada quando se trata de industrialização/desindustrialização. O objetivo é analisar o caráter sistêmico do setor industrial a partir do método de insumo-produto, por meio de indicadores de intensidade direta e intensidade direta mais indireta da indústria. Por esta medida, é possível deixar mais clara a contribuição do artigo, ou seja, fornecer uma medida de integração produtiva do setor industrial com os demais setores, de modo a verificar se a indústria tem ganhado importância relativa como setor articulador das atividades produtivas

    Impact of maternal and postnatal zinc dietary status on the prostate of pubescent and adult rats

    No full text
    Zinc is important for cell physiology and alteration of its levels during development can modulate a series of biological events. The aim of this study was to investigate whether dietary zinc deficiency or supplementation during morphogenesis and early postnatal development could interfere in prostate maturation. Pregnant rats were exposed to a standard diet (NZ: 35 mg Zn/kg chow), low- zinc diet (LZ: 3 mg of Zn/kg chow) and zinc- supplemented diet (HZ: 180 mg/Kg chow) from gestational day 10 (GD10) through postnatal day 21 (PND21). After weaning, male offspring were divided into three groups that were submitted to the same food conditions as their mothers until PND53. The animals were euthanized at PND53 and PND115. The ventral prostate was removed, weighed and its fragments were subjected to histological, western blot and zymography analysis. PND53: body and prostate weight were lower in LZ compared to NZ; the epithelial compartment was reduced while the stromal compartment was increased in LZ compared to NZ; there was an increase in the amount of collagen and reduction in AR and SIRT1 expression in LZ compared to NZ. PND115: body weight was lower in LZ compared to NZ and prostate weight was similar among the groups; peripheral physiological hyperplasia was observed, as well as an increased epithelial proliferation index and reduced PAR4 expression in LZ and HZ compared to NZ. Zinc deficiency during prostate morphogenesis and differentiation is potentially harmful to its morphology, however, by restoring the standard dietary environment, the gland responds to the new microenvironment independent of the previous dietary condition.FAPESP-Sao Paulo State Research FoundationSao Paulo State Univ Unesp, Inst Biosci, Dept Morphol, Botucatu, SP, BrazilUniv Fed Sao Paulo, UNIFESP, Dept Sci Sea, Santos, SP, BrazilUniv Fed Sao Paulo, UNIFESP, Dept Sci Sea, Santos, SP, BrazilFAPESP: 2014/25932-6Web of Scienc

    Androgen Deprivation From Pre-puberty To Peripuberty Interferes In Proteins Expression In Pubertal And Adult Rat Epididymis.

    No full text
    Few studies have focused on experimental testosterone deprivation in immature animals. Therefore, this study used sexually immature rats aiming to evaluate the testes and epididymis histology and proteins expression in these organs on PND50 and 75, after premature antiandrogen exposure, from PND21 to 44. Although the androgen deprivation from pre-puberty up to peripuberty did not alter the histological organization of the testes and epididymis either at puberty or at adulthood, the treatment impaired the expression of specific proteins in epididymal tissue at puberty and adulthood (androgen receptor, calmodulin, Rab11A). These changes may be related to impaired epididymal function, sperm quality and fertility capacity as observed in a previous study. Further studies are necessary to better investigate the molecular mechanisms involved in the impairment on reproductive competence of male rats after precocious hormonal injury.3865-7
    corecore