907 research outputs found

    High Speed Visible Light Communication Using Blue GaN Laser Diodes

    Get PDF
    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications

    Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays

    Get PDF
    Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers

    Microscopic modelling of doped manganites

    Full text link
    Colossal magneto-resistance manganites are characterised by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting to conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low energy physics. Focussing on short range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on Orbital Physic

    Electronic dielectric constants of insulators by the polarization method

    Full text link
    We discuss a non-perturbative, technically straightforward, easy-to-use, and computationally affordable method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating solids at the first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF, PbTiO3_3, and CaTiO3_3. The predicted \einf's agree well with those given by Density Functional Perturbation Theory (the reference theoretical treatment), and they are generally within less than 10 % of experiment.Comment: RevTeX 4 pages, 2 ps figure

    Competency mapping framework for regulating professionally oriented degree programmes in higher education

    Get PDF
    Recognition of the huge variation between professional graduate degree programmes and employer requirements, especially in the construction industry, necessitated a need for assessing and developing competencies that aligned with professionally oriented programmes. The purpose of this research is to develop a competency mapping framework (CMF) in this case for quantity surveying honours degree programmes. The graduate competency threshold benchmark (GCTB) is a key component of the CMF. Therefore, the CMF contains the mapping process, the template documents and the benchmark. The research adopted literature review, pilot study, case studies (including semi-structured interviews) and expert forum in developing the framework. The framework developed in this research provides new insight into how degree programmes map against competencies. Thus, the framework can be applied more widely, to other professional degree programmes, for monitoring and improving the quality and professional standards of construction degree programmes by accrediting bodies. This should connect construction graduates more effectively to the industry

    Candidemia among iranian patients with severe COVID-19 admitted to ICUs

    Get PDF
    As a novel risk factor, COVID-19 has led to an increase in the incidence of candidemia and an elevated mortality rate. Despite being of clinical importance, there is a lack of data regarding COVID-19-associated candidemia (CAC) among Iranian patients. Therefore, in this retrospective study, we assessed CAC epidemiology in the intensive care units (ICUs) of two COVID-19 centers in Mashhad, Iran, from early November 2020 to late January 2021. Yeast isolates from patients� blood were identified by 21-plex polymerase chain reaction (PCR) and sequencing, then subjected to antifungal susceptibility testing according to the CLSI M27-A3 protocol. Among 1988 patients with COVID-19 admitted to ICUs, seven had fungemia (7/1988; 0.03), among whom six had CAC. The mortality of the limited CAC cases was high and greatly exceeded that of patients with COVID-19 but without candidemia (100 (6/6) vs. 22.7 (452/1988)). In total, nine yeast isolates were collected from patients with fungemia: five Candida albicans, three C. glabrata, and one Rhodotorula mucilaginosa. Half of the patients infected with C. albicans (2/4) were refractory to both azoles and echinocandins. The high mortality of patients with CAC, despite antifungal therapy, reflects the severity of the disease in these patients and underscores the importance of rapid diagnosis and timely initiation of antifungal treatment. © 2021 by the authors

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
    corecore