199 research outputs found

    Paper Session III-C - Solar Power in Space

    Get PDF
    The space program could not have existed without the solar cells and its twin, the transistor. Almost all satellites ever launched have relied on these two semiconductor devices to operate. Solar cells convert sunlight directly into electricity. No more than several hundred microns thick, they produce electricity without boilers, turbines, pipes and cooling towers. In fact, they work without moving parts. Photons, packets of energy from the sun, silently split loosely bound electrons in the solar material from their orbits. The solar cell’s intrinsic voltage pushes those liberated electrons in its vicinity to contacts where they flow through as electricity. The modularity of the technology called photovoltaics allows technicians to exactly fit the amount of solar cells to the application at hand whether requiring a milliwatt or megawatts of power

    Competency mapping framework for regulating professionally oriented degree programmes in higher education

    Get PDF
    Recognition of the huge variation between professional graduate degree programmes and employer requirements, especially in the construction industry, necessitated a need for assessing and developing competencies that aligned with professionally oriented programmes. The purpose of this research is to develop a competency mapping framework (CMF) in this case for quantity surveying honours degree programmes. The graduate competency threshold benchmark (GCTB) is a key component of the CMF. Therefore, the CMF contains the mapping process, the template documents and the benchmark. The research adopted literature review, pilot study, case studies (including semi-structured interviews) and expert forum in developing the framework. The framework developed in this research provides new insight into how degree programmes map against competencies. Thus, the framework can be applied more widely, to other professional degree programmes, for monitoring and improving the quality and professional standards of construction degree programmes by accrediting bodies. This should connect construction graduates more effectively to the industry

    Arginine–glycine–aspartic acid functional branched semi-interpenetrating hydrogels

    Get PDF
    For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require postprocessing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography

    Wave-current interaction in Willapa Bay

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12014, doi:10.1029/2011JC007387.This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.Primary funding for this study was furnished by the U.S. Geological Survey, Coastal and Marine Geology Program, under the Carolinas Coastal Change Processes Project.2012-06-1
    corecore