38 research outputs found

    Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops

    Get PDF
    We have investigated the mean field dynamics of an overdamped viscoelastic medium driven through quenched disorder. The model introduced incorporates coexistence of pinned and sliding degrees of freedom and can exhibit continuous elastic depinning or first order hysteretic depinning. Numerical simulations indicate mean field instabilities that correspond to macroscopic stick-slip events and lead to premature switching. The model is relevant for the dynamics of driven vortex arrays in superconductors and other extended disordered systems.Comment: 4 pages, 2 figure

    Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions

    Full text link
    We present numerical simulations of avalanches and critical phenomena associated with hysteresis loops, modeled using the zero-temperature random-field Ising model. We study the transition between smooth hysteresis loops and loops with a sharp jump in the magnetization, as the disorder in our model is decreased. In a large region near the critical point, we find scaling and critical phenomena, which are well described by the results of an epsilon expansion about six dimensions. We present the results of simulations in 3, 4, and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'

    Tracing the evolution of the world's first mined bauxite from palaeotopography to pyritization: insights from Minjera deposits, Istria, Croatia

    Get PDF
    The Minjera bauxites are the first analysed and mined bauxites in the world. They are a group of pyritised bauxites situated in northern Istria, developed during the subaerial exposure phase which marked a major part of the Late Cretaceous and Palaeocene in northern Istria. In this study, the morphology, petrography, mineralogy, geochemistry as well as stable sulphur isotopes of the D-1 and D-15 deposits from Minjera were studied, as well as the evolution of their bedrock and cover. This study found that those two deposits differ in morphology, mineralogy and geochemistry as a consequence of their different palaeotopographical positions, with the D-1 deposit located at a higher position at the time of its formation compared to D-15, which led to the higher degree of leaching and desilicification in the D-1 deposit. The pyritisation in the studied deposits was a multi-phase process, which began with the deposition of framboidal pyrite and micrometre-sized anhedral pyrite, over which colloform pyrite was precipitated. This indicates that the solutions were initially supersaturated with iron sulphide, saturation of which subsequently changed, as finally euhedral, dendritic and acicular pyrite were deposited, indicating undersaturated conditions. The final stage was marked by deposition of pyrite veins. This formational sequence of pyrites is also supported by stable sulphur isotopes, as the δ34S values exhibit a wide range from -40.86 to 2.32 ‰, where lower values indicate an open system with an unrestricted sulphate supply in which supersaturated conditions could have been achieved, while the higher values indicate a change towards a closed system with limited sulphate supply. The organic matter necessary for microbial sulphate reduction was derived from the marshy environment established atop of the bauxite. The initial flooding started in the Palaeocene, with the first part of the sequence being deposited under lacustrine conditions, which changed towards fully marine with the deposition of Foraminiferal limestones

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma

    Crackling Noise

    Full text link
    Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behavior over many decades of sizes, their behavior is likely independent of microscopic and macroscopic details, and progress can be made by the use of very simple models. The fact that simple models and real systems can share the same behavior on a wide range of scales is called universality. We illustrate these ideas using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses. This field is still developing: we describe a number of continuing challenges

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    On WPA2-Enterprise Privacy in High Education and Science

    No full text
    A plethora of organizations, companies, and foremost universities and educational institutions are using WPA2-Enterprise protocol to allow their end-users to connect to provided Wi-Fi networks. When both the provider’s and the end-user’s devices are configured properly, it is considered one of the safest Wi-Fi connection protocols with the added benefits of having a unique password for every Wi-Fi user. However, a known evil twin attack can be performed to steal users’ Wi-Fi login credentials, if the devices are not configured correctly. Considering the widespread use of Wi-Fi-enabled smartphones and rising concerns regarding users’ privacy, we focus on the privacy aspects of WPA2-Enterprise vulnerabilities mainly on the widespread Eduroam network. We show that device deanonymization is a concerning liability of many Eduroam networks. More than 87% of 1650 devices collected during a two-month test on our university are vulnerable to MAC address deanonymization attack. Furthermore, by analyzing the Eduroam Configuration Assistant Tool of 1066 different institutions around the world, 67% of exported Eduroam profiles having the Wi-Fi device reveal the user’s identity in the clear, thus linking the users with the device’s MAC address. Indeed, the analysis of the configuration profiles has been confirmed by performing the deanonymization attack on a large-scale international music festival in our country, where 70% of the devices have been vulnerable. Additionally, we showcase the psychological aspects of secure Eduroam users, where some are willing to modify secure configuration profiles to gain aspects to certain blocked features. As a result, the attacker is granted with user credentials and IMSI number and provided with access to all Eduroam-related services
    corecore