99 research outputs found

    Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study

    Get PDF
    Spaceborne multi-temporal interferometric synthetic aperture radar (MT-InSAR) is a monitoring technique capable of extracting line of sight (LOS) cumulative surface displacement measurements with millimeter accuracy. Several improvements in the techniques and datasets quality lead to more effective, near real time assessment and response, and a greater ability of constraining dynamically changing physical processes. Using examples of the COSMO-SkyMed (CSK) system, we present a methodology that bridges the gaps between MT-InSAR and the relative stiffness method for tunnel-induced subsidence damage assessment. The results allow quantification of the effect of the building on the settlement profile. As expected the greenfield deformation assessment tends to provide a conservative estimate in the majority of cases (~ 71% of the analyzed buildings), overestimating tensile strains up to 50%. With this work we show how these two techniques in the field of remote sensing and structural engineering can be synergistically used to complement and replace the traditional ground based analysis by providing an extended coverage and a temporally dense set of data

    On the accuracy of integrated water vapor observations and the potential for mitigating electromagnetic path delay error in InSAR

    Get PDF
    Abstract. A field campaign was carried out in the framework of the Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects (METAWAVE) project sponsored by the European Space Agency (ESA) to investigate the accuracy of currently available sources of atmospheric columnar integrated water vapor measurements. The METAWAVE campaign took place in Rome, Italy, for the 2-week period from 19 September to 4 October 2008. The collected dataset includes observations from ground-based microwave radiometers and Global Positioning System (GPS) receivers, from meteorological numerical model analysis and predictions, from balloon-borne in-situ radiosoundings, as well as from spaceborne infrared radiometers. These different sources of integrated water vapor (IWV) observations have been analyzed and compared to quantify the accuracy and investigate the potential for mitigating IWV-related electromagnetic path delay errors in Interferometric Synthetic Aperture Radar (InSAR) imaging. The results, which include a triple collocation analysis accounting for errors inherently present in every IWV measurements, are valid not only to InSAR but also to any other application involving water vapor sensing. The present analysis concludes that the requirements for mitigating the effects of turbulent water vapor component into InSAR are significantly higher than the accuracy of the instruments analyzed here. Nonetheless, information on the IWV vertical stratification from satellite observations, numerical models, and GPS receivers may provide valuable aid to suppress the long spatial wavelength (>20 km) component of the atmospheric delay, and thus significantly improve the performances of InSAR phase unwrapping techniques

    Water vapour distribution at urban scale using high-resolution numerical weather model and spaceborne SAR interferometric data

    Get PDF
    Abstract. The local distribution of water vapour in the urban area of Rome has been studied using both a high resolution mesoscale model (MM5) and Earth Remote Sensing-1 (ERS-1) satellite radar data. Interferometric Synthetic Aperture Radar (InSAR) techniques, after the removal of all other geometric effects, estimate excess path length variation between two different SAR acquisitions (Atmospheric Phase Screen: APS). APS are strictly related to the variations of the water vapour content along the radar line of sight. To the aim of assessing the MM5 ability to reproduce the gross features of the Integrated Water Vapour (IWV) spatial distribution, as a first step ECMWF IWV has been used as benchmark against which the high resolution MM5 model and InSAR APS maps have been compared. As a following step, the high resolution IWV MM5 maps have been compared with both InSAR and surface meteorological data. The results show that the high resolution IWV model maps compare well with the InSAR ones. Support to this finding is obtained by semivariogram analysis that clearly shows good agreement beside from a model bias

    Concept of an Effective Sentinel-1 Satellite SAR Interferometry System

    Get PDF
    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Sentinel-1 TOPS processing algorithms allow an injection of coregistered bursts into the database. Once the area of interest is set and basic processing parameters are given, the selected data are merged and processed by the Persistent Scatterers (PS) InSAR method or an optimized Small Baselines (SB) InSAR derivative. Depending on the expected deliverables, the processing results can be post-analyzed using a custom approach, in order to achieve a set of reliable measurement points. Final results can be post-processed and visualized using a custom GIS toolbox, consisting in open-source GIS functionality. The GIS post-processing is enforced by HPC power as well. To demonstrate the practical applicability of the described system, a subsidence area in Konya city, Turkey is used as the study area for Sentinel-1 InSAR evaluation

    Deformation monitoring of dam infrastructures via spaceborne MT-InSAR. The case of La Viñuela (Málaga, southern Spain)

    Get PDF
    Dams require continuous security and monitoring programs, integrated with visual inspection and testing in dam surveillance programs. New approaches for dam monitoring focus on multi-sensor integration, taking into account emerging technologies such as GNSS, optic fiber, TLS, InSAR techniques, GBInSAR, GPR, that can be used as complementary data in dam monitoring, eliciting causes of dam deformation that cannot be assessed with traditional techniques. This paper presents a Multi-temporal InSAR (MT-InSAR) monitoring of La Viñuela dam (Málaga, Spain), a 96 m height earth-fill dam built from 1982 to 1989. The presented MT-InSAR monitoring system comprises three C-band radar (~5,7 cm wavelength) datasets from the European satellites ERS-1/2 (1992-2000), Envisat (2003-2008), and Sentinel-1A/B (2014-2018). ERS-1/2 and Envisat datasets were processed using StaMPS. In the case of Sentinel-1A/B, two different algorithms were applied, SARPROZ and ISCE-SALSIT, allowing the comparison of the estimated LOS velocity pattern. The obtained results confirm that LaViñuela dam is deforming since its construction, as an earth-fill dam. Maximum deformation rates were measured in the initial period (1992-2000), being around -7 mm/yr (LOS direction) on the coronation of the dam. In the period covered by the Envisat dataset (2003-2008), the average deforming pattern was lower, of the order of -4 mm/yr. Sentinel-1A/B monitoring confirms that the deformation is still active in the period 2014-2018 in the central-upper part of the dam, with maximums of velocity reaching -6 mm/yr. SARPROZ and ISCE-SALSIT algorithms provide similar results. It was concluded that MT-InSAR techniques can support the development of new and more effective means of monitoring and analyzing the health of dams complementing actual dam surveillance systems

    MT-InSAR and Dam Modeling for the Comprehensive Monitoring of an Earth-Fill Dam: The Case of the Benínar Dam (Almería, Spain)

    Get PDF
    The Benínar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam’s lifetime. The present research integrates Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and dam modeling to validate the monitoring of this dam, opening the way to enhanced integrated monitoring systems. MT-InSAR was proved to be a reliable and continuous monitoring system for dam deformation, surpassing previously installed systems in terms of precision. MT-InSAR allowed the almost-continuous monitoring of this dam since 1992, combining ERS, Envisat, and Sentinel-1A/B data. Line-of-sight (LOS) velocities of settlement in the crest of the dam evolved from maximums of −6 mm/year (1992–2000), −4 mm/year (2002–2010), and −2 mm/year (2015–2021) with median values of −2.6 and −3.0 mm/year in the first periods (ERS and Envisat) and −1.3 mm/year in the Sentinel 1-A/B period. These results are consistent with the maximum admissible modeled deformation from construction, confirming that settlement was more intense in the dam’s early stages and decreased over time. MT-InSAR was also used to integrate the monitoring of the dam basin, including critical slopes, quarries, and infrastructures, such as roads, tracks, and spillways. This study allows us to conclude that MT-InSAR and dam modeling are important elements for the integrated monitoring systems of embankment dams. This conclusion supports the complete integration of MT-InSAR and 3D modeling into the monitoring systems of embankment dams, as they are a key complement to traditional geotechnical monitoring and can overcome the main limitations of topographical monitoring

    Low formalin concentrations induce fine-tuned responses that are sex and age-dependent: A developmental study

    Get PDF
    The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5–15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10–30 min) in both males and females. During the early phase (0–5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.Ihssane Zouikr, Melissa A. Tadros, Vicki L. Clifton, Kenneth W. Beagley, Deborah M. Hodgso
    corecore