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Abstract: Spaceborne multi-temporal interferometric synthetic aperture radar (MT-InSAR) is a
monitoring technique capable of extracting line of sight (LOS) cumulative surface displacement
measurements with millimeter accuracy. Several improvements in the techniques and datasets quality
led to more effective, near real time assessment and response, and a greater ability of constraining
dynamically changing physical processes. Using examples of the COSMO-SkyMed (CSK) system,
we present a methodology that bridges the gaps between MT-InSAR and the relative stiffness
method for tunnel-induced subsidence damage assessment. The results allow quantification of the
effect of the building on the settlement profile. As expected the greenfield deformation assessment
tends to provide a conservative estimate in the majority of cases (~71% of the analyzed buildings),
overestimating tensile strains up to 50%. With this work we show how these two techniques in the
field of remote sensing and structural engineering can be synergistically used to complement and
replace the traditional ground based analysis by providing an extended coverage and a temporally
dense set of data.

Keywords: multi-temporal InSAR; InSAR; tunneling; subsidence; relative stiffness method;
structural engineering; damage assessment; soil-structure interaction

1. Introduction

MT-InSAR is a well-established monitoring technique capable of extracting time-series of LOS
surface displacements. It was born around the end of the 1990s in order to overcome traditional InSAR
limitations such as atmospheric artifacts, and temporal and geometrical decorrelation when long ERS
interferometric stacks of data started being available [1,2]. Since then several improvements have been
made on both the algorithms and the quality of the data. In particular, the availability of high resolution
and short repeat time satellite constellations lead to more effective near real-time disaster monitoring,
assessment response and greater ability to constrain dynamically changing physical processes [3,4].
Although many studies have been carried out using InSAR in the field of structural monitoring looking
at urban areas [5–7], bridges [8,9], railways [10,11], tunneling [12–15], and dams [16–19], state of the
art scientific literature sees only few papers coupling MT-InSAR and structural modeling as a building
damage assessment tool [6,20–22].

Several procedures have been proposed in civil engineering to predict the structural damage
caused by underground excavations to adjacent structures (e.g., [23,24]). One of the key factors for an
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accurate damage assessment is the quantification of the soil-structure interaction, which influences the
settlement profile originated by the excavation [25–28]. Attempts have been made to include this effect
in simplified procedures for the damage assessment of large scale urban projects, by connecting the
building-induced variation of the settlement profile with the relative stiffness between the structure
and the soil [29–32]. Structural engineering literature compared the outcome of these methods with
experimental [26,33] and numerical [27,29–31] data, but their potentials and limitations need to be
assessed against large datasets of field measurements to further validate their practical application [34].

In this paper we propose a new integrated damage assessment methodology that aims to bridge
the gaps between InSAR time-series analysis and the relative stiffness method for the assessment of
tunneling-induced structural damage [32]. Our dataset includes 72 images acquired from April 2011
to December 2015 combined to produce time-series of cumulative deformation over the city of London
(UK), where the Crossrail twin tunnels were excavated starting in 2012 [35]. We compare our InSAR
dataset to a dense set of ground based measurements acquired over 14 buildings, showing how
the MT-InSAR time-series product can overcome the lack of ground based monitoring of building
displacements and thus facilitate the application of damage assessment procedures which take the
soil-structure interaction mechanism into account [34].

The paper is organized as follows: Section 2 describes the data and the area of interest together
with the Crossrail project. Section 3 describes briefly the MT-InSAR methodologies and the relative
stiffness method. Section 4 presents and discusses the results and the modeling. Conclusions are
provided in Section 5.

2. Dataset and Area of Interest

Our dataset includes 72 CSK images acquired from April 2011 to December 2015, combined to
produce time-series of cumulative deformation and ground based measurements of 14 buildings affected
by tunneling induced subsidence. The ground data was obtained from the Underground Construction
Information Management System (UCIMS), a web-based geotechnical data management system designed
for the project [36].

CSK is a constellation of 4 low Earth orbit satellites carrying an X-band SAR antenna (3.1 cm
wavelength) enabling a better (3 m) resolution and sampling rate (up to 176.25 MHz) of ground
displacements than longer wavelength systems (e.g., 6 cm for C-band, 24 cm for L-band). Each satellite
has a repeat cycle of 16 days, but shorter repeats may be achieved using the constellation. Here, we
used data acquired from the CSK background mission covering all the largest cities worldwide with a
population bigger than one hundred thousand inhabitants with an average sampling rate of 16 days.
The SAR image dataset is formed by a stack of CSK STRIPMAP-HIMAGE covering a 40 × 40 km swath,
at 3 m resolution in both azimuth (along track) and range (cross track) directions. Polarization of the
electromagnetic waves is HH (horizontal transmit and receive). The incidence angle is ~29 degrees across
the swath.

We analyzed a sub-area of the entire frame in single-look complex (SLC) format of 5 km × 5 km
in the azimuth and range directions, respectively (Figure 1). The analyzed area covers the central
route section of the Crossrail project, which is currently the largest underground excavation project
in Europe and involves the boring of 21 km of twin tunnel of 6.2 m diameter and up to 40 m deep,
and the construction of 10 new stations under central London.

The local geology of the region of London under consideration consists of layers (from top to bottom)
of Terrace Deposits, London clay, the Lambeth Group (gravels, sands, silt, and clay), Thanet sands,
and Chalk. Tunneling was primarily through the London clay and Lambeth Group layers, resulting in
settlements with the typical characteristics of tunneling in soft ground. In the region two aquifers are
present, with piezometric surface at approximately zero Ordnance Datum (OD) and between −40 m and
−50 m OD, respectively [37].

The tunneling was executed by soft-ground pressure-balance tunnel-boring machines between
May 2012 and May 2015. Compensation grouting was adopted in several locations along the tunnel
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route and near the stations to minimize ground settlements. The 14 selected buildings are located
directly above, or in close proximity to, the tunnel track (Figure 1), and therefore were potentially at
risk of being damaged by the tunnel-induced settlement [37].

To verify the accuracy of the MT-InSAR measurements, the satellite-based ground displacements
of one transect transverse to the tunnel track were compared with the displacements measured by
Precise Levelling Points (PLP). The PLPs were installed on the ground prior to the beginning of the
excavation and could measures the difference in elevation between two or more points with high orders
of accuracy (0.3–0.9 mm). In this work, we used precise levelling measurements acquired with daily
frequency between May 2012 and August 2014, and therefore covering the passage of the tunnel boring
machine in the area of interest. The analysis of the data confirmed the typical Gaussian shape of the
settlement trough along the tunnel, combined with larger settlements near to the station excavations.
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Figure 1. Cumulative displacement map over London spanning April 2011–December 2015.
Negative values indicate subsidence. Blue stars indicate the locations of the analysed buildings.
(a–d) represent the locations of the non-linear time series analysis, which are shown beneath the
satellite image (in mm).
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3. Methodology

3.1. MT-InSAR

Synthetic aperture radar multi temporal interferometry (MT-InSAR) is a well established technique
for ground deformation monitoring characterized by millimetric accuracy [1,18]. MT-InSAR combines
sets of SAR images acquired in interferometric mode in order to obtain time-series of deformation for
points on the ground maintaining stable scattering properties in time [1,38]. MT-InSAR measurements
provide coverage of ground deformation at high resolution and spatial scales not reasonably accessible
with in situ measurements such as leveling and GPS.

A variety of software tools are available for implementing multi-image InSAR techniques. In this
work we make use of SARPROZ [39] and adopt a non- linear single master multi-temporal time series
analysis approach [38]. For further details on the technique we refer the reader to [1,38,39].

3.2. Bulding Damage Assessment Relative Stiffness Method

Common procedures for the assessment of settlement-induced structural damage start with
the evaluation of the tensile strains caused by the greenfield settlement profile when applied to
the base of a linear elastic beam model of the building [24]. The soil greenfield displacements
are defined as tunneling-induced ground displacements in absence of buildings. They are usually
calculated analytically or numerically neglecting the influence of the structure weight and stiffness,
while considering the type of soil, the tunnel depth and diameter, and the volume of ground lost
during the excavation [40–42]. The settlement profile depicted in Figure 2 is typical of tunneling in
soft ground.

The severity of the applied ground distortion is quantified by the deflection ratio ∆/L (Figure 2).
For any given two points on the soil surface, ∆/L is the ratio of the relative deflection ∆ and their
horizontal distance L. ∆ is defined as the maximum vertical distance from the settlement profile
between the two points and a straight line connecting them. The distance L typically corresponds to
the length of the building either in the sagging (Lsag) or hogging (Lhog) part of the greenfield settlement
profile (Figure 2).
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Figure 2. Typical shape of a tunneling-induced settlement trough. The inflection point separates the
sagging (sag) from the hogging (hog) zone. The relative deflection and building length for each zone
are indicated with ∆ and L.

The greenfield beam strains are then approximated using the calculated deflection ratio, and are then
compared to pre-defined limiting strain values which relate to a certain level of expected damage [24].
Each building damage level is described in terms of approximate crack widths, as summarized in Table 1.
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The building weight and stiffness typically has the effect of widening the soil settlement profile,
thus reducing its curvature. For this reason, the deflection ratio calculated in greenfield conditions is
generally bigger than the actual one resulting from the soil-structure interaction effect. This simplified
method therefore provides conservative damage predictions [43].

Table 1. Damage classification of building, based on limiting tensile strain levels and expected crack
width [24,44].

Category of Damage Damage Class Approximate Crack Width Limiting Tensile Strain Levels (%)

Aesthetic damage
Negligible Up to 0.1 mm 0–0.05
Very slight Up to 1 mm 0.05–0.075

Slight Up to 5 mm 0.075–0.15

Functional damage,
affecting serviceability

Moderate 5 to 15 mm or a number of
cracks > 3 mm 0.15–0.3

Severe 15 to 25 mm, but also depends
on number of cracks >0.3

Structural damage,
affecting stability Very severe Usually > 25 mm, but depends

on number of cracks >0.3

A more accurate assessment method takes into consideration the fact that the soil-structure
interaction modifies the shape and magnitude of the settlement profile, thus affecting the final damage
classification and decision-making process. Modification factors [29,31,32] have been defined to
account for the difference between greenfield distortions (∆gr/Lgr), and actual distortions (∆/L),
and therefore to update the tensile strains to more realistic values. In this paper we consider the
modification factor for the deflection ratio, which is defined as the ratio between the actual deflection
ratio of the building and the greenfield deflection ratio of the soil surface [29]:

MF =
(∆/L)(

∆gr/Lgr
) (1)

If a building spans over the inflection point (Figure 2), the modification factors are calculated
separately for the sagging and hogging part of the trough. Note that buildings affect not only the
relative deflection ∆ but also the location of the inflection point, and therefore the length Lsag and Lhog
of the building partition in the sagging and hogging zones, respectively. If the actual ∆/L is not known
a-priori, e.g., for damage prediction, the modification factors can be obtained by using design curves
based on building and soil characteristics [29,31,32]. The derived ∆/L = MF (∆gr/Lgr) are then used to
calculate the tensile strain of the linear elastic beam of the building according to Timoshenko beam
theory [24,45].

In this paper we investigate how MT-InSAR measurements can be used, in combination with
the relative stiffness method, to rapidly evaluate potential tunneling-induced building damage
by providing information on the actual soil-structure mechanism which would be otherwise
inaccessible. In particular our procedure and validation can be summarized in the following steps:
(a) analytical calculation of the greenfield displacement fields (i.e., zero height) for the Crossrail project,
(b) comparison and validation of the analytical greenfield settlement profile with persistent scattering
(PS) points located on the ground, (c) calculation of the PS based deflection ratio for the selected
buildings and modification factor calculation as in Equation (1), (d) derivation of the building strains
and their comparison with the greenfield strains.

4. Results and Discussion

Approximately 228,000 persistent scatterers have been identified over a 25 km2 area in London
(Figure 1) for an overall density of 9000 PS/km2. Figure 3 shows how the typical transverse settlement
profile caused by the tunneling-induced loss of ground can be recognized from the cumulative
displacement field. Time-series analysis of points located over different areas reveal subsidence
varying from 2 cm to 3.5 cm, providing a precise assessment tool able to monitor the current progress
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of excavation works (Figure 1a–d). The PS density enabled by the high-resolution X-band CSK
constellation in urban areas allows to capture subsidence profiles of sections transverse to the tunnel
axis (Figures 3 and 4). The comparison between InSAR PS and precise levelling points (PLP) on
the ground (Figure 3) indicates a reasonable match between the two datasets (5.5 mm standard
deviation for PS with temporal coherence higher than 0.8 and 2.5 mm for PS with temporal coherence
higher than 0.9). The graph in Figures 3 and 4 includes the Gaussian curve typically used to model
tunneling-induced greenfield displacements [40].

The soil-structure interaction effect is measured by the difference between the greenfield and
building displacements (Figure 4), which are responsible for the actual damage. Figure 4 also shows
the displacements of the PS located on top of the building.
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To assess the building damage within the framework of the relative stiffness method we
implemented the following procedure: first we validated the greenfield model with the PS tunnel
cross section shown in Figure 3. Because relatively small horizontal strains are transferred to
buildings [24,25,28], for each building we selected PS cross sections localized on the roof and projected
them onto the vertical. We interpolated the PS points using a modified Gaussian model [46,47] (Figure 4)
and calculate the ∆/L values (see Figure 2). We derived the sagging and hogging modification factors
by dividing these values by the corresponding (∆gr/Lgr), obtained through fitting the PLP data with
an appropriate Gaussian curve, as illustrated in Figure 3. Figure 5 shows the modification factors
resulting from the analysis of 14 sample buildings. The modification factors were obtained for the
sagging and hogging part of each structure settlement trough, according to Equation 1. Due to their
relative high stiffness with respect to the soil stiffness, the buildings tend to reduce the curvature of
the greenfield settlement profile, leading to modification factors smaller than 1 for the majority of the
analyzed cases. The modification factors can then be used to directly approximate the building strain
which is then used to classify the building damage.
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Figure 5. MT-InSAR-based building modification factors.

Figure 6 shows the building tensile strains based on the InSAR monitoring data in relation to
their corresponding greenfield values. About 71% of the analyzed buildings fall below the 1:1 line,
indicating the expected conservative tendency of the greenfield-based assessment. The smaller the
values, the larger the flattening effect of the structure on the greenfield profile. Figure 7 shows
a schematic representation of the proposed method.
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5. Conclusions

In this paper we applied two techniques in the field of remote sensing and structural engineering
to assess building damage due to tunneling. Several procedures have been proposed in literature
for predicting structural damage induced by underground excavations. The quantification of the
soil-structure interaction effect is one of the key factors for an accurate damage assessment. Attempts to
include this effect in large scale urban damage assessment procedures have been performed connecting
the building-induced variation of the settlement profile with the relative stiffness between the structure
and the soil [29–32]. However, the lack of assessment and validation against large datasets of field
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measurements has highlighted the difficulty of assessing their potential and consequently their practical
application [34].

The proposed approach demonstrates how the use of MT-InSAR time-series analysis can be coupled
to the relative stiffness method in order to calculate building modification factors. These modification
factors can then be used to assess building damage caused by tunneling-induced subsidence. We have
demonstrated the feasibility of this approach jointly exploiting two differential techniques, bridging the
gaps between remote-sensing space-borne observations and structural engineering analysis. We validated
our PS cumulative displacement fields using ground based leveling measurements and found a standard
deviation of 2.5 mm for PS with temporal coherence higher than 0.9. The results show the difference
between building and greenfield movements (Figure 6), allowing quantification of the effect of the
building on the settlement profile. As expected the greenfield deformation assessment tends to provide
a conservative estimate in the majority of cases (10 of the 14 buildings), overestimating tensile strains
up to 50%. Future research will point toward the creation of an automatic system capable of generating
tunneling induced damage maps including PS time-series analysis, building and soil characteristics.
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