66 research outputs found

    Periodicity in Volcanic Gas Plumes: A Review and Analysis

    Get PDF
    Persistent non-explosive passive degassing is a common characteristic of active volcanoes. Distinct periodic components in measurable parameters of gas release have been widely identified over timescales ranging from seconds to months. The development and implementation of high temporal resolution gas measurement techniques now enables the robust quantification of high frequency processes operating on timescales comparable to those detectable in geophysical datasets. This review presents an overview of the current state of understanding regarding periodic volcanic degassing, and evaluates the methods available for detecting periodicity, e.g., autocorrelation, variations of the Fast Fourier Transform (FFT), and the continuous wavelet transform (CWT). Periodicities in volcanic degassing from published studies were summarised and statistically analysed together with analyses of literature-derived datasets where periodicity had not previously been investigated. Finally, an overview of current knowledge on drivers of periodicity was presented and discussed in the framework of four main generating categories, including: (1) non-volcanic (e.g., atmospheric or tidally generated); (2) gas-driven, shallow conduit processes; (3) magma movement, intermediate to shallow storage zone; and (4) deep magmatic processes

    Periodicity in volcanic gas plumes: A review and analysis

    Get PDF
    Persistent non-explosive passive degassing is a common characteristic of active volcanoes. Distinct periodic components in measurable parameters of gas release have been widely identified over timescales ranging from seconds to months. The development and implementation of high temporal resolution gas measurement techniques now enables the robust quantification of high frequency processes operating on timescales comparable to those detectable in geophysical datasets. This review presents an overview of the current state of understanding regarding periodic volcanic degassing, and evaluates the methods available for detecting periodicity, e.g., autocorrelation, variations of the Fast Fourier Transform (FFT), and the continuous wavelet transform (CWT). Periodicities in volcanic degassing from published studies were summarised and statistically analysed together with analyses of literature-derived datasets where periodicity had not previously been investigated. Finally, an overview of current knowledge on drivers of periodicity was presented and discussed in the framework of four main generating categories, including: (1) non-volcanic (e.g., atmospheric or tidally generated); (2) gas-driven, shallow conduit processes; (3) magma movement, intermediate to shallow storage zone; and (4) deep magmatic processes.</jats:p

    Periodic volcanic degassing behavior: The Mount Etna example

    Get PDF
    In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5 Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250 and 500–1200 s. A notable correlation between gas flux fluctuations in the latter band and contemporaneous seismic root-mean-square values suggests that this degassing behavior may be generated by periodic bursting of rising gas bubble trains at the magma-air interface.Published4818–48221.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveJCR Journalrestricte

    Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano

    Get PDF
    Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vents exhibiting Strombolian explosions emit low to negligible passive fluxes and are CO2-dominated, even during passive degassing. We propose a model for the conduit system based on contrasting rheological properties between vent areas. Our methodology has advantages for resolving contrasting outgassing dynamics given that measured bulk plume compositions are often intermediate between those of the distinct vent areas. We therefore emphasise the need for a vent-specific approach at multi-vent volcanoes and suggest that our approach could provide a transformative advance in volcano monitoring applications

    Degassing at Sabancaya volcano measured by UV cameras and the NOVAC network

    Get PDF
    We used low-cost Raspberry Pi ultraviolet (UV) cameras to measure sulphur dioxide (SO2) fluxes from Sabancaya volcano, Peru, during eruptive activity on 27 April 2018. Light dilution corrections were made by operating instruments at two distances simultaneously. Estimated SO2 fluxes of 27.1 kgs-1 are higher than previously reported, likely due to the current eruptive episode (ongoing since November 2016). Each eruptive event included frequent (2–3 per minute), ash-rich emissions, forming gas pulses with masses of 3.0–8.2 tonnes SO2. Sustained degassing and lack of overpressure suggest open-vent activity. Mean fluxes are consistent with those measured by a permanent NOVAC station (25.9 kgs-1) located under the plume, with remaining differences likely due to windspeed estimates and sampling rate. Our work highlights the importance of accurate light dilution and windspeed modelling in SO2 retrievals and suggests that co-location of UV cameras with permanent scanning spectrometers may be valuable in providing accurate windspeeds

    High-resolution hyperspectral imaging using low-cost components: application within environmental monitoring scenarios

    Get PDF
    High-resolution hyperspectral imaging is becoming indispensable, enabling the precise detection of spectral variations across complex, spatially intricate targets. However, despite these significant benefits, currently available high-resolution set-ups are typically prohibitively expensive, significantly limiting their user base and accessibility. These limitations can have wider implications, limiting data collection opportunities, and therefore our knowledge, across a wide range of environments. In this article we introduce a low-cost alternative to the currently available instrumentation. This instrument provides hyperspectral datasets capable of resolving spectral variations in mm-scale targets, that cannot typically be resolved with many existing low-cost hyperspectral imaging alternatives. Instrument metrology is provided, and its efficacy is demonstrated within a mineralogy-based environmental monitoring application highlighting it as a valuable addition to the field of low-cost hyperspectral imaging

    Conduit dynamics and post-explosion degassing on Stromboli:a combined UV camera and 1 numerical modelling treatment

    Get PDF
    Recent gas flux measurements have shown that strombolian explosions are often followed by periods of elevated flux, or ‘gas codas’, with durations of order a minute. Here, we present UV camera data from 200 events recorded at Stromboli volcano to constrain the nature of these codas for the first time, providing estimates for combined explosion plus coda SO2 masses of ≈ 18 – 225 kg. Numerical simulations of gas slug ascent show that substantial proportions of the initial gas mass can be distributed into a train of ‘daughter bubbles’ released from the base of the slug, which we suggest, generate the codas, on bursting at the surface. This process could also cause transitioning of slugs into cap bubbles, significantly reducing explosivity. This study is the first attempt to combine high temporal resolution gas flux data with numerical simulations of conduit gas flow to investigate volcanic degassing dynamics

    Dynamics of mild strombolian activity on Mt. Etna

    Get PDF
    Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈0.1 to ≈14 kg per event, with corresponding total gas masses of ≈0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measurement data. If we assume that gas transport within the magma can be represented by a train of rising gas pockets or slugs, then the high frequency of events indicates that these slugs must have been in close proximity. In this case the longer repose durations associated with the larger slugs would be consistent with interactions between adjacent slugs leading to coalescence, a process expedited close to the surface by rapid slug expansion. We apply basic modelling considerations to the measured gas masses in order to investigate potential slug characteristics governing the observed activity.We also cross correlated the acquired gas fluxes with contemporaneously obtained seismic data but found no relationship between the series in line with the mild form of manifest explosivity

    Characterization of acoustic infrasound signals at VolcĂĄn de Fuego, Guatemala: a baseline for volcano monitoring

    Get PDF
    Monitoring volcanic unrest and understanding seismic and acoustic signals associated with eruptive activity is key to mitigate its impacts on population and infrastructure. On June 3, 2018, VolcĂĄn de Fuego, Guatemala, produced a violent eruption with very little warning. The paroxysmal phase of this event generated pyroclastic density currents (PDC) that impacted nearby settlements resulting in 169 fatalities, 256 missing, and nearly 13,000 permanently displaced from their homes. Since then, VolcĂĄn de Fuego has been instrumented with an extensive network of seismic and infrasound sensors. Infrasound is a new monitoring tool in Guatemala. A key step toward its effective use in volcano monitoring at VolcĂĄn de Fuego is establishing a baseline for the interpretation of the recorded signals. Here, we present the first comprehensive characterization of acoustic signals at VolcĂĄn de Fuego for the whole range of surface activity observed at the volcano. We use data collected during temporary deployments in 2018 and from the permanent infrasound network. Infrasound at Fuego is dominated by the occurrence of short-duration acoustic transients linked to both ash-rich and gas-rich explosions, at times associated with the generation of shock waves. The rich acoustic record at Fuego includes broadband and harmonic tremor, and episodes of chugging. We explore the occurrence of these signals in relation to visual observations of surface activity, and we investigate their source mechanisms within the shallow conduit system. This study provides a reference for the interpretation of acoustic signals at VolcĂĄn de Fuego and a baseline for real-time monitoring of its eruptive activity using infrasound data. Our results suggest that changes in the style of activity and morphology of the summit crater are reflected in the acoustic signature of eruption; as such our study provides a reference for the interpretation of acoustic signals at VolcĂĄn de Fuego and a baseline for real-time monitoring of its eruptive activity using infrasound
    • 

    corecore