62 research outputs found

    Characterization of sediment dynamics in an estuary environment using acoustic techniques

    Get PDF
    In recent years, acoustic-based methods have been developed to characterize the dynamical behavior of loose sediments and bed deposits in very shallow water environments. In this paper, we present preliminary results on the estimation of the dynamic changes in an estuarine environment using data from dual-frequency echosounding at high resolution and contemporaneous hydrological measurements including suspended matter concentration, density subbottom profiling, and data assimilation based on a sediment transport model. Those measurements are being conducted in the lower estuary of the Scheldt (Belgium) at the Sint Anna site where strong tide and season-dependent phenomena can be observed. This allows us to construct a ground-truthed, time-dependent geoacoustic model of the environment, i.e., a characterization of sound speed, density, and attenuation in function of time and depth. Synthetic acoustic data generated by that model will then be used to test inversion methods for monitoring sediment dynamics in real time

    Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus

    Get PDF
    The precise mechanisms leading to the emergence of low-level glycopeptide resistance in Staphylococcus aureus are poorly understood. In this study, we used whole genome deep sequencing to detect differences between two isogenic strains: a parental strain and a stable derivative selected stepwise for survival on 4 ”g/ml teicoplanin, but which grows at higher drug concentrations (MIC 8 ”g/ml). We uncovered only three single nucleotide changes in the selected strain. Nonsense mutations occurred in stp1, encoding a serine/threonine phosphatase, and in yjbH, encoding a post-transcriptional negative regulator of the redox/thiol stress sensor and global transcriptional regulator, Spx. A missense mutation (G45R) occurred in the histidine kinase sensor of cell wall stress, VraS. Using genetic methods, all single, pairwise combinations, and a fully reconstructed triple mutant were evaluated for their contribution to low-level glycopeptide resistance. We found a synergistic cooperation between dual phospho-signalling systems and a subtle contribution from YjbH, suggesting the activation of oxidative stress defences via Spx. To our knowledge, this is the first genetic demonstration of multiple sensor and stress pathways contributing simultaneously to glycopeptide resistance development. The multifactorial nature of glycopeptide resistance in this strain suggests a complex reprogramming of cell physiology to survive in the face of drug challenge

    Δ/ζ systems: their role in resistance, virulence, and their potential for antibiotic development

    Get PDF
    Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin–antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin–antitoxin family consists of the Δ/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin Δ. Upon degradation of Δ, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. Δ/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded Δ/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin–antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of Δ/ζ toxin–antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Full text link

    Representing grounding line dynamics in numerical ice sheet models

    No full text
    info:eu-repo/semantics/nonPublishe

    Inversion of satellite ocean colour imagery and geoacoustic characterization of seabed properties: variational data inversion using a semi-automatic adjoint approach

    No full text
    In this paper a semi-automatic adjoint approach for variational data inversion is proposed. To demonstrate the effectiveness of the approach two illustrative examples are presented: the geoacoustic characterization of a Mediterranean shallow water environment using realistic experimental conditions and the estimation of oceanic and atmospheric constituents from satellite ocean colour imagery. In the first case geoacoustic parameters of the seabed (density, sound speed and attenuation) are determined from long/medium range underwater acoustic propagation data in the water column. In the second case the aerosol optical thickness in the atmosphere and the phytoplankton concentration in the ocean (chlorophyll-a) are estimated from solar reflectance measurements obtained with ocean colour sensors on board satellites. The general methodology for both applications is based on a modular graph concept that allows a straightforward adjoint computation by means of gradient backpropagation. Generation and coding of the adjoint models in both cases are accomplished with an algorithmic tool

    Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Get PDF
    Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving “shelfy stream” models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients

    From epitaxy to converters topologies what issues for 200 mm GaN/Si?

    No full text
    Conference of 61st IEEE International Electron Devices Meeting, IEDM 2015 ; Conference Date: 7 December 2015 Through 9 December 2015; Conference Code:119534International audienceEnergy is one of the main societal challenges of the 21th century. With the growth of population and cities, CO2 emission reduction, efficiency improvements especially in transportation modes will have to be enhanced. Cost will the main driver of power devices. This paper reviews the developments at CEA-Leti in power electronics. A complete GaN on 200 mm line has been implemented. For each stage of device realization a discussion of the issues will be done
    • 

    corecore