52 research outputs found

    Real-time monitoring of stress evolution during thin film growth by in situ substrate curvature measurement

    Full text link
    Strain engineering is the art of inducing controlled lattice distortions in a material to modify specific physicochemical properties. Strain engineering is applied for basic fundamental studies of physics and chemistry of solids but also for device fabrication through the development of materials with new functionalities. Thin films are one of the most important tools for strain engineering. Thin films can in fact develop large strain due to the crystalline constrains at the interface with the substrate and/or as the result of specific morphological features that can be selected by an appropriate tuning of the deposition parameters. Within this context, the in situ measurement of the substrate curvature is a powerful diagnostic tool allowing a real time monitoring of the stress state of the growing film. This manuscript reviews a few recent applications of this technique and presents new measurements that point out the great potentials of the substrate curvature measurement in strain engineering. Our study also shows how, due to the high sensitivity of the technique, the correct interpretation of the results can be in certain cases not trivial and require complementary characterizations and an accurate knowledge of the physicochemical properties of the materials under investigation

    Energy conversion processes with perovskite-type materials

    Get PDF
    Mixed oxides derived from the perovskite structure by combination of A- and B-site elements and by partial substitution of oxygen provide an immense playground of physico-chemical properties. Here, we account for own research conducted at the Paul Scherrer Institute on perovskite-type oxides and oxynitrides used in electrochemical, photo(electro)chemical and catalytic processes aiming at facing energy relevant issues

    Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes

    Get PDF
    The need for reducing the operating temperature of solid-oxide fuel cells (SOFCs) imposed by cost reduction has pushed significant progress in fundamental understanding of the individual components, as well as materials innovation and device engineering. Proton-conducting oxides have emerged as potential alternative electrolyte materials to oxygen-ion conducting oxides for operation at low and intermediate temperatures. This article describes major recent developments in electrolytes, electrodes, and complete fuel cell performance for SOFCs based on proton-conducting electrolytes. Although the performance of such fuel cells is still relatively modest, significant improvements in the power density output have been made during the last couple of years, and this trend is expected to continu

    Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba<sub>2</sub>In<sub>2</sub>O<sub>5</sub> Thin Films

    Get PDF
    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba<sub>2</sub>In<sub>2</sub>O<sub>5</sub> (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment, the brownmillerite crystal structure of BIO exhibits an ordered oxygen ion sublattice, which has been speculated to result in anisotropic oxygen ion conduction. The hydrated structure of BIO, however, resembles a perovskite and the protons in it were predicted to be ordered in layers. To complement the significant theoretical and experimental efforts recently reported on the potentially anisotropic conductive properties in BIO, we measure here both the proton and oxygen ion conductivity along different crystallographic directions. Using epitaxial thin films with different crystallographic orientations, the charge transport for both charge carriers is shown to be anisotropic. The anisotropy of the oxygen ion conduction can indeed be explained by the layered structure of the oxygen sublattice of BIO. The anisotropic proton conduction, however, further supports the suggested ordering of the protonic defects in the material. The differences in proton conduction along different crystallographic directions attributed to proton ordering in BIO are of a similar extent as those observed along different crystallographic directions in materials where proton ordering is not present but where protons find preferential conduction pathways through chainlike or layered structures
    corecore