6,493 research outputs found

    A 1.8 v Gm-C Highly Tunable Low Pass Filter for Sensing Applications

    Get PDF
    This paper presents a fully integrated, first-order Low Pass Filter with 2-tuning points giving a wide versatility to the filter. It allows for a fine/thick tuning with a cutoff frequency that spans over several orders of magnitude, from 220 mHz to 39.1 kHz. The Gm-C filter proposed is designed in a 180 nm CMOS technology with a total power consumption of 1.08 µW for a 1.8 V power supply and a dynamic range up to 73 dB. The proposed filter is a very competitive solution compared with previously reported works, meeting the requirements for portable on chip sensor interfaces based on impedance spectroscopy and biosignal front-end interfaces

    Fuel economy optimization from the interaction between engine oil and driving conditions

    Full text link
    [EN] Low viscosity engine oils have shown to be an effective solution to the fuel consumption reduction target, however, their potential is closely linked to the vehicle and engine design and to the real driving conditions. In this study the interaction between engine oil and driving conditions of two urban routes and one rural route in Spain and the United Kingdom has been put to test with the aim to evaluate their joint effect over fuel economy of a freight transport vehicle. In a first approximation, six different oil formulations, three of them belonging to the new API CK-4 and FA-4 categories and two with molybdenum-based friction modifier, were tested under stationary conditions with a medium-duty diesel engine. Followed by tests under real driving conditions of a freight transport vehicle, developed by means of computer simulations with an adjusted vehicle model, taking the fuel consumption maps of the six oil formulations, vehicle characteristics and the selected driving cycles as inputs to the model. Results of engine bench tests and simulations with oils of lower HTHS viscosity showed fuel consumption reduction values as expected. However unexpected results were found between the oils with molybdenum-based friction modifier added to their formulation.The authors would like to thank to the Spanish Ministerio de Economia y Competitividad for supporting the EFICOIL project (TRA2015-70785-R) and to the program Ayudas de Investigacion y Desarrollo (PAID-01-17) of the Universitat Politecnica de Valencia.Tormos, B.; Pla Moreno, B.; Bastidas-Moncayo, KS.; Ramirez-Roa, LA.; Perez, T. (2019). Fuel economy optimization from the interaction between engine oil and driving conditions. Tribology International. 138:263-270. https://doi.org/10.1016/j.triboint.2019.05.042S263270138Edwards, M. R., Klemun, M. M., Kim, H. C., Wallington, T. J., Winkler, S. L., Tamor, M. A., & Trancik, J. E. (2017). Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 200, 453-474. doi:10.1039/c7fd00063dDente, S. M. R., & Tavasszy, L. (2018). Policy oriented emission factors for road freight transport. Transportation Research Part D: Transport and Environment, 61, 33-41. doi:10.1016/j.trd.2017.03.021Hofer, C., Jäger, G., & Füllsack, M. (2018). Large scale simulation of CO2 emissions caused by urban car traffic: An agent-based network approach. Journal of Cleaner Production, 183, 1-10. doi:10.1016/j.jclepro.2018.02.113Lepitzki, J., & Axsen, J. (2018). The role of a low carbon fuel standard in achieving long-term GHG reduction targets. Energy Policy, 119, 423-440. doi:10.1016/j.enpol.2018.03.067Solaymani, S. (2019). CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy, 168, 989-1001. doi:10.1016/j.energy.2018.11.145European Union, The European Union explained: transport, EU publications doi:10.2775/13082.Eurostat statistics explained. road freight transport statistics, [Accessed: 10/01/2019]. URL https://ec.europa.eu/eurostat/statistics-explained/index.php/Road_freight_transport_statistics.Kin, B., Spoor, J., Verlinde, S., Macharis, C., & Van Woensel, T. (2018). Modelling alternative distribution set-ups for fragmented last mile transport: Towards more efficient and sustainable urban freight transport. Case Studies on Transport Policy, 6(1), 125-132. doi:10.1016/j.cstp.2017.11.009Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2010). Comparative analysis of the carbon footprints of conventional and online retailing. International Journal of Physical Distribution & Logistics Management, 40(1/2), 103-123. doi:10.1108/09600031011018055Manerba, D., Mansini, R., & Zanotti, R. (2018). Attended Home Delivery: reducing last-mile environmental impact by changing customer habits. IFAC-PapersOnLine, 51(5), 55-60. doi:10.1016/j.ifacol.2018.06.199Gao, J., Chen, H., Tian, G., Ma, C., & Zhu, F. (2019). An analysis of energy flow in a turbocharged diesel engine of a heavy truck and potentials of improving fuel economy and reducing exhaust emissions. Energy Conversion and Management, 184, 456-465. doi:10.1016/j.enconman.2019.01.053O. Delgado, F. Rodríguez, R. Muncrief, Fuel efficiency technology in european heavy-duty vehicles: baseline and potential for the 2020 2030 time frame, Tech. rep., Int. Counc. Clean. Transport.(2017) https://www.theicct.org/publications/fuel-efficiency-technology-european-heavy-duty-vehicles-baseline-and-potential-2020.J. Norris, G. Escher, Heavy duty vehicles technology potential and cost study, Tech. rep., Int. Counc. Clean. Transport. (2017)https://www.theicct.org/publications/heavy-duty-vehicles-technology-potential-and-cost-study.Ezhilmaran, V., Vasa, N. J., & Vijayaraghavan, L. (2018). Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction. Surface and Coatings Technology, 335, 314-326. doi:10.1016/j.surfcoat.2017.12.052Arslan, A., Masjuki, H. H., Kalam, M. A., Varman, M., Mosarof, M. H., Mufti, R. A., … Khurram, M. (2017). Investigation of laser texture density and diameter on the tribological behavior of hydrogenated DLC coating with line contact configuration. Surface and Coatings Technology, 322, 31-37. doi:10.1016/j.surfcoat.2017.05.037Marian, M., Tremmel, S., & Wartzack, S. (2018). Microtextured surfaces in higher loaded rolling-sliding EHL line-contacts. Tribology International, 127, 420-432. doi:10.1016/j.triboint.2018.06.024Triantafyllopoulos, G., Kontses, A., Tsokolis, D., Ntziachristos, L., & Samaras, Z. (2017). Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions. Energy, 140, 365-373. doi:10.1016/j.energy.2017.09.023Macián, V., Tormos, B., Bermúdez, V., & Ramírez, L. (2014). Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions. Tribology International, 79, 132-139. doi:10.1016/j.triboint.2014.06.003Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76-88. doi:10.1016/j.trd.2015.06.006Souza de Carvalho, M. J., Rudolf Seidl, P., Pereira Belchior, C. R., & Ricardo Sodré, J. (2010). Lubricant viscosity and viscosity improver additive effects on diesel fuel economy. Tribology International, 43(12), 2298-2302. doi:10.1016/j.triboint.2010.07.014Macián, V., Tormos, B., Ruiz, S., & Miró, G. (2016). Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribology International, 94, 240-248. doi:10.1016/j.triboint.2015.08.028Taylor, R., Selby, K., Herrera, R., & Green, D. A. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions. SAE International Journal of Fuels and Lubricants, 5(1), 488-495. doi:10.4271/2011-01-2130Permude, A., Pathak, M., Kumar, V., & Singh, S. (2012). Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine. SAE International Journal of Fuels and Lubricants, 5(3), 1426-1435. doi:10.4271/2012-28-0010Tormos, B., Ramírez, L., Johansson, J., Björling, M., & Larsson, R. (2017). Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribology International, 110, 23-34. doi:10.1016/j.triboint.2017.02.007Van Dam, W., Miller, T., Parsons, G. M., & Takeuchi, Y. (2011). The Impact of Lubricant Viscosity and Additive Chemistry on Fuel Economy in Heavy Duty Diesel Engines. SAE International Journal of Fuels and Lubricants, 5(1), 459-469. doi:10.4271/2011-01-2124Skjoedt, M., Butts, R., Assanis, D. N., & Bohac, S. V. (2008). Effects of oil properties on spark-ignition gasoline engine friction. Tribology International, 41(6), 556-563. doi:10.1016/j.triboint.2007.12.001Rao, L., Zhang, Y., Kook, S., Kim, K. S., & Kweon, C.-B. (2019). Understanding in-cylinder soot reduction in the use of high pressure fuel injection in a small-bore diesel engine. Proceedings of the Combustion Institute, 37(4), 4839-4846. doi:10.1016/j.proci.2018.09.013Fan, C., Song, C., Lv, G., Wei, J., Zhang, X., Qiao, Y., & Liu, Y. (2019). Impact of post-injection strategy on the physicochemical properties and reactivity of diesel in-cylinder soot. Proceedings of the Combustion Institute, 37(4), 4821-4829. doi:10.1016/j.proci.2018.08.001Yamamoto, K., Kotaka, A., & Umehara, K. (2010). Additives for Improving the Fuel Economy of Diesel Engine Systems. Tribology Online, 5(4), 195-198. doi:10.2474/trol.5.195Marx, N., Ponjavic, A., Taylor, R. I., & Spikes, H. A. (2017). Study of Permanent Shear Thinning of VM Polymer Solutions. Tribology Letters, 65(3). doi:10.1007/s11249-017-0888-7Cui, J., Oberoi, S., Goldmints, I., & Briggs, S. (2014). Field and Bench Study of Shear Stability of Heavy Duty Diesel Lubricants. SAE International Journal of Fuels and Lubricants, 7(3), 882-889. doi:10.4271/2014-01-2791Rizzoni, G., Guzzella, L., & Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 4(3), 246-257. doi:10.1109/3516.789683Green, D. A., Selby, K., Mainwaring, R., & Herrera, R. (2011). The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements. SAE International Journal of Fuels and Lubricants, 5(1), 480-487. doi:10.4271/2011-01-212

    Spine Instability Neoplastic Score: agreement across different medical and surgical specialties

    Get PDF
    [eng] Background Context Spinal instability is an acknowledged complication of spinal metastases; in spite of recent suggested criteria, it is not clearly defined in the literature. Purpose This study aimed to assess intra and interobserver agreement when using the Spine Instability Neoplastic Score (SINS) by all physicians involved in its management. Study Design Independent multicenter reliability study for the recently created SINS, undertaken with a panel of medical oncologists, neurosurgeons, radiologists, orthopedic surgeons, and radiation oncologists, was carried out. Patient Sample Ninety patients with biopsy-proven spinal metastases and magnetic resonance imaging, reviewed at the multidisciplinary tumor board of our institution, were included. Outcome Measures Intraclass correlation coefficient (ICC) was used for SINS score agreement. Fleiss kappa statistic was used to assess agreement on the location of the most affected vertebral level; agreement on the SINS category ("stable," "potentially stable," or "unstable"); and overall agreement with the classification established by tumor board. Methods Clinical data and imaging were provided to 83 specialists in 44 hospitals across 14 Spanish regions. No assessment criteria were pre-established. Each clinician assessed the SINS score twice, with a minimum 6-week interval. Clinicians were blinded to assessments made by other specialists and to their own previous assessment. Subgroup analyses were performed by clinicians' specialty, experience (≤7, 8-13, ≥14 years), and hospital category (four levels according to size and complexity). This study was supported by Kovacs Foundation. Results Intra and interobserver agreement on the location of the most affected levels was "almost perfect" (κ>0.94). Intra-observer agreement on the SINS score was "excellent" (ICC=0.77), whereas interobserver agreement was "moderate" (ICC=0.55). Intra-observer agreement in SINS category was "substantial" (k=0.61), whereas interobserver agreement was "moderate" (k=0.42). Overall agreement with the tumor board classification was "substantial" (κ=0.61). Results were similar across specialties, years of experience, and hospital category. Conclusions Agreement on the assessment of metastatic spine instability is moderate. The SINS can help improve communication among clinicians in oncology care

    ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    Vector field as a quintessence partner

    Full text link
    We derive generic equations for a vector field driving the evolution of flat homogeneous isotropic universe and give a comparison with a scalar filed dynamics in the cosmology. Two exact solutions are shown as examples, which can serve to describe an inflation and a slow falling down of dynamical ``cosmological constant'' like it is given by the scalar quintessence. An attractive feature of vector field description is a generation of ``induced mass'' proportional to a Hubble constant, which results in a dynamical suppression of actual cosmological constant during the evolution.Comment: 14 pages, LaTeX file, iopart class, discussion extended, reference adde

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD
    corecore