4,619 research outputs found

    See-saw neutrino masses and large mixing angles in the vortex background on a sphere

    Full text link
    In the vortex background on a sphere, a single 6-dimensional fermion family gives rise to 3 zero-modes in the 4-dimensional point of view, which may explain the replication of families in the Standard Model. Previously, it had been shown that realistic hierarchical mass and mixing patterns can be reproduced for the quarks and the charged leptons. Here, we show that the addition of a single heavy 6-dimensional field that is gauge singlet, unbound to the vortex, and embedded with a bulk Majorana mass enables to generate 4D Majorana masses for the light neutrinos through the see-saw mechanism. The scheme is very predictive. The hierarchical structure of the fermion zero-modes leads automatically to an inverted pseudo-Dirac mass pattern, and always predicts one maximal angle in the neutrino see-saw matrix. It is possible to obtain a second large mixing angle from either the charged lepton or the neutrino sector, and we demonstrate that this model can fit all observed data in neutrino oscillations experiments. Also, U_{e3} is found to be of the order ~0.1.Comment: 23 pages, 1 figur

    Trastuzumab and pertuzumab without chemotherapy in early-stage HER2+ breast cancer: a plain language summary of the PHERGain study

    Full text link
    This is a summary of a publication about the PHERGain study, which was published in The Lancet Oncology in May 2021. The study includes 376 women with a type of breast cancer called HER2-positive breast cancer that can be removed by surgery. In the study, researchers wanted to learn if participants could be treated with two medicines called trastuzumab and pertuzumab without the need for chemotherapy. To identify HER2-positive tumors with more sensitivity to anti-HER2 therapies, the researchers used a type of imaging called a FDG-PET scan to check how well the treatments were working.Participants took a treatment before surgery, consisting of either chemotherapy (docetaxel and carboplatin) plus trastuzumab and pertuzumab (group A) or trastuzumab and pertuzumab alone (plus hormone therapy if the tumor was hormone receptor-positive; group B). After two cycles of treatment, participants underwent a FDG-PET scan. Participants assigned to group A completed 6 cycles of treatment regardless of 18F-FDG-PET results. Participants in group B continued the same treatment until surgery if their FDG-PET scan showed the treatment was working. While participants who did not show a response started treatment with chemotherapy in addition to trastuzumab and pertuzumab. All participants then had surgery.The results revealed that, of the participants in group B who showed a response using FDG-PET scan, 37.9% achieved a disappearance of all invasive cancer in the breast and axillary lymph nodes. This rate appears to be higher than those reported in previous studies evaluating the same treatment. These participants also had less side effects and improved overall quality of life compared with participants taking chemotherapy plus trastuzumab and pertuzumab.Early monitoring of how well participants respond to treatment by FDG-PET scan seems to identify participants with operable HER2-positive breast cancer who were more likely to benefit from trastuzumab and pertuzumab without the need to have chemotherapy. The PHERGain study is still ongoing and results on long-term survival are expected to be released in 2023. Clinical Trial Registration: NCT03161353 (ClinicalTrials.gov)

    Objective assessment of dietary patterns using metabolic phenotyping: a randomized, controlled, crossover trial

    Get PDF
    Background: The burden of non-communicable diseases, such as obesity, diabetes, coronary heart disease and cancer, can be reduced by the consumption of healthy diets. Accurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, many of them influenced by food intake. We aim to classify people according to dietary behaviour and enhance dietary reporting using metabolic profiling of urine. Methods: To develop metabolite models from 19 healthy volunteers who attended a clinical research unit for four day periods on four occasions. We used the World Health Organisation’s healthy eating guidelines (increase fruits, vegetables, wholegrains, dietary fibre and decrease fats, sugars, and salt) to develop four dietary interventions lasting for four days each that ranged from a diet associated with a low to high risk of developing non-communicable disease. Urine samples were measured by 1H-NMR spectroscopy. This study is registered as an International Standard Randomized Controlled Trial, number ISRCTN 43087333. INTERMAP U.K. (n=225) and a healthy-eating Danish cohort (n=66) were used as free-living validation datasets. Findings: There was clear separation between the urinary metabolite profiles of the four diets. We also demonstrated significant stepwise differences in metabolite levels between the lowest and highest metabolic risk diets and developed metabolite models for each diet. Application of the derived metabolite models to independent cohorts confirmed the association between urinary metabolic and dietary profiles in INTERMAP (P<0•001) and the Danish cohort (P<0•001). Interpretation: Urinary metabolite models, developed in a highly controlled environment, can classify groups of free-living people into consumers of dietary profiles associated with lower or higher non-communicable disease risk based on multivariate metabolite patterns. This approach enables objective monitoring of dietary patterns in population settings and enhances validity of dietary reporting. Funding: National Institute for Health Research (NIHR) and Medical Research Council (MRC)

    Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome

    Get PDF
    To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS) several modalities of biological and clinical data must be combined. We aimed to identify profiles of faecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Faecal metabolites were measured using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy and gut microbiome using Shotgun Metagenomic Sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HC) with extensive clinical, biological and phenotype information. Data were analysed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve (AUC) of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on faecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavourable stress-response related to gastrointestinal symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS

    Activation of Serine One-Carbon Metabolism by Calcineurin A beta 1 Reduces Myocardial Hypertrophy and Improves Ventricular Function

    Get PDF
    Background In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. Objectives The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action. Methods Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. Results In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1Δi12 mice show increased cardiac hypertrophy and declined contractility. Conclusions The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    The gut microbiota influences skeletal muscle mass and function in mice

    Get PDF
    The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes Rapsyn and Lrp4 Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice
    corecore