102 research outputs found

    Discrete-like diffraction dynamics in free space

    Get PDF
    We introduce a new class of paraxial optical beams exhibiting discrete-like diffraction patterns reminiscent to those observed in periodic evanescently coupled waveguide lattices. It is demonstrated that such paraxial beams are analytically described in terms of generalized Bessel functions. Such effects are elucidated via pertinent examples

    Vibrational properties of CdGa2S4 at high pressure

    Full text link
    [EN] Raman scattering measurements have been performed in cadmium digallium sulphide (CdGa2S4) with defect chalcopyrite structure up to 25 GPa in order to study its pressure-induced phase transitions. These measurements have been complemented and compared with latticedynamics ab initio calculations including the TO-LO splitting at high pressures in order to provide a better assignment of experimental Raman modes. In addition, experimental and theoretical Gruneisen parameters have been reported in order to calculate the molar heat capacity and thermal expansion coefficient of CdGa2S4. Our measurements provide evidence that CdGa2S4 undergoes an irreversible phase transition above 15 GPa to a Raman-inactive phase, likely with a disordered rock salt structure. Moreover, the Raman spectrum observed on downstroke from 25 GPa to 2 GPa has been attributed to a new phase, tentatively identified as a disordered zinc blende structure, that undergoes a reversible phase transition to the Raman-inactive phase above 10 GPa. Published under license by AIP Publishing.The authors thank the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) under Grant Nos. MAT2016-75586-C4-2/3-P and MAT2015-71070-REDC (MALTA Consolider) and the Generalitat Valenciana under Project No. PROMETEO/2018/123-EFIMAT. E. P.-G., A. M., and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster.Gallego-Parra, S.; Gomis, O.; Vilaplana Cerda, RI.; Ortiz, H.; Perez-Gonzalez, E.; Luna Molina, R.; Rodríguez-Hernández, P.... (2019). Vibrational properties of CdGa2S4 at high pressure. Journal of Applied Physics. 125(11):1-12. https://doi.org/10.1063/1.5080503S11212511Gomis, O., Santamaría-Pérez, D., Vilaplana, R., Luna, R., Sans, J. A., Manjón, F. J., … Ursaki, V. V. (2014). Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure. Journal of Alloys and Compounds, 583, 70-78. doi:10.1016/j.jallcom.2013.08.123Cohen, M. L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B, 32(12), 7988-7991. doi:10.1103/physrevb.32.7988Kim, J. W., & Kim, Y. J. (2007). Optical Properties of Eu Doped M-Ga2S4 (M:Zn, Ca, Sr) Phosphors for White Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 7(11), 4065-4068. doi:10.1166/jnn.2007.066Yu, R., Noh, H. M., Moon, B. K., Choi, B. C., Jeong, J. H., Jang, K., … Jang, J. K. (2013). Photoluminescence properties of a new red-emitting Mn-activated ZnGa2S4 phosphor. Materials Research Bulletin, 48(6), 2154-2158. doi:10.1016/j.materresbull.2013.02.017Liang, F., Kang, L., Lin, Z., Wu, Y., & Chen, C. (2017). Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coordination Chemistry Reviews, 333, 57-70. doi:10.1016/j.ccr.2016.11.012Sahariya, J., Kumar, P., & Soni, A. (2017). Structural and optical investigations of ZnGa2X4 (X = S, Se) compounds for solar photovoltaic applications. Materials Chemistry and Physics, 199, 257-264. doi:10.1016/j.matchemphys.2017.07.003Syrbu, N. N., Tiron, A. V., Parvan, V. I., Zalamai, V. V., & Tiginyanu, I. M. (2015). Interference of birefractive waves in CdGa2S4 crystals. Physica B: Condensed Matter, 463, 88-92. doi:10.1016/j.physb.2015.02.007Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493rGrzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Gomis, O., Vilaplana, R., Manjón, F. J., Ruiz-Fuertes, J., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2015). HgGa2 Se4 under high pressure: An optical absorption study. physica status solidi (b), 252(9), 2043-2051. doi:10.1002/pssb.201451714Rahnamaye Aliabad, H. A., Basirat, S., & Ahmad, I. (2017). Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. Journal of Materials Science: Materials in Electronics, 28(21), 16476-16483. doi:10.1007/s10854-017-7559-1Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Sans, J. Á., Santamaría-Pérez, D., Popescu, C., Gomis, O., Manjón, F. J., Vilaplana, R., … Tiginyanu, I. M. (2014). Structural and Vibrational Properties of CdAl2S4under High Pressure: Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 118(28), 15363-15374. doi:10.1021/jp5037926Lottici, P. P., & Razzetti, C. (1984). Raman scattering in mixed defect chalcopyrite crystals. Journal of Molecular Structure, 115, 133-136. doi:10.1016/0022-2860(84)80032-0Kerimova, T. G., Abdullaev, N. A., Mamedova, I. A., Badalova, Z. I., Guliev, R. A., Paucar, R., … Mamedov, N. T. (2013). Optical phonons in CdGa2S4x Se4(1 − x) alloys. Semiconductors, 47(6), 761-766. doi:10.1134/s1063782613060110Tiginyanu, I. M., Lottici, P. P., Razzetti, C., & Gennari, S. (1993). Effects of the Cations on the Raman Spectra of Sulphur Defect Chalcopyrites. Japanese Journal of Applied Physics, 32(S3), 561. doi:10.7567/jjaps.32s3.561Kerimova, T. G., Mamedova, I. A., Abdullayev, N. A., Asadullayeva, S. Q., & Badalova, Z. I. (2014). Raman scattering in ZnGa2Se4 single crystals. Semiconductors, 48(7), 868-871. doi:10.1134/s1063782614070112Razzetti, C., & Lottici, P. P. (1993). Raman Scattering in Defective AIIB2IIIX4VICompounds and Alloys. Japanese Journal of Applied Physics, 32(S3), 431. doi:10.7567/jjaps.32s3.431Syrbu, N. N., Nemerenco, L. L., & Cojocaru, O. (2002). Vibrational and Polariton Spectra of CdGa2S4 and CdAl2S4 Crystals. Crystal Research and Technology, 37(1), 101-110. doi:10.1002/1521-4079(200202)37:13.0.co;2-dGomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Gomis, O., Ortiz, H. M., Sans, J. A., Manjón, F. J., Santamaría-Pérez, D., Rodríguez-Hernández, P., & Muñoz, A. (2016). InBO3 and ScBO3 at high pressures: An ab initio study of elastic and thermodynamic properties. Journal of Physics and Chemistry of Solids, 98, 198-208. doi:10.1016/j.jpcs.2016.07.002K. R. Allakhverdiev, Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials (Springer, 2001), p. 99.Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Sanjuán, M. L., & Morón, M. C. (2002). Raman study of Zn1−xMnxGa2Se4 diluted magnetic semiconductors: disorder and resonance effects. Physica B: Condensed Matter, 316-317, 565-567. doi:10.1016/s0921-4526(02)00574-4Radautsan, S. I., Tiginyanu, I. M., Ursakii, V. V., Fomin, V. M., & Pokatilov, E. P. (1990). The Peculiarities of the Temperature Broadening of Raman Light Scattering Lines in Zn(Cd)Ga2Se4 Single Crystals. physica status solidi (b), 162(1), K63-K66. doi:10.1002/pssb.2221620143Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Manjón, F. J., Gomis, O., Vilaplana, R., Sans, J. A., & Ortiz, H. M. (2013). Order-disorder processes in adamantine ternary ordered-vacancy compounds. physica status solidi (b), 250(8), 1496-1504. doi:10.1002/pssb.201248596Mitani, T., Naitou, T., Matsuishi, K., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2003). Raman scattering in CdGa2Se4 under pressure. physica status solidi (b), 235(2), 321-325. doi:10.1002/pssb.200301579Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators (Springer, 1979), p. 110.Cheng, Y. C., Jin, C. Q., Gao, F., Wu, X. L., Zhong, W., Li, S. H., & Chu, P. K. (2009). Raman scattering study of zinc blende and wurtzite ZnS. Journal of Applied Physics, 106(12), 123505. doi:10.1063/1.3270401(2017). Theoretical Analysis of Elastic, Mechanical and Phonon Properties of Wurtzite Zinc Sulfide under Pressure. Crystals, 7(6), 161. doi:10.3390/cryst7060161González, J., Fernández, B. J., Besson, J. M., Gauthier, M., & Polian, A. (1992). High-pressure behavior of Raman modes inCuGaS2. Physical Review B, 46(23), 15092-15101. doi:10.1103/physrevb.46.15092Talwar, D. N., Vandevyver, M., Kunc, K., & Zigone, M. (1981). Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grüneisen, and thermal expansion. Physical Review B, 24(2), 741-753. doi:10.1103/physrevb.24.741Griesinger, A., Spindler, K., & Hahne, E. (1999). Measurements and theoretical modelling of the effective thermal conductivity of zeolites. International Journal of Heat and Mass Transfer, 42(23), 4363-4374. doi:10.1016/s0017-9310(99)00096-4Hofmeister, A. M., & Mao, H. -k. (2002). Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of Sciences, 99(2), 559-564. doi:10.1073/pnas.241631698Miller, S. A., Gorai, P., Ortiz, B. R., Goyal, A., Gao, D., Barnett, S. A., … Toberer, E. S. (2017). Capturing Anharmonicity in a Lattice Thermal Conductivity Model for High-Throughput Predictions. Chemistry of Materials, 29(6), 2494-2501. doi:10.1021/acs.chemmater.6b04179Zeier, W. G., Zevalkink, A., Gibbs, Z. M., Hautier, G., Kanatzidis, M. G., & Snyder, G. J. (2016). Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angewandte Chemie International Edition, 55(24), 6826-6841. doi:10.1002/anie.201508381Barron, T. H. . (1957). Grüneisen parameters for the equation of state of solids. Annals of Physics, 1(1), 77-90. doi:10.1016/0003-4916(57)90006-4Arora, A. K. (1990). Grüneisen parameter of soft phonons and high pressure phase transitions in semiconductors. Journal of Physics and Chemistry of Solids, 51(4), 373-375. doi:10.1016/0022-3697(90)90122-vGrüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. doi:10.1002/andp.19123441202Mishra, K. K., Bevara, S., Ravindran, T. R., Patwe, S. J., Gupta, M. K., Mittal, R., … Tyagi, A. K. (2018). High pressure behavior of complex phosphate K2Ce[PO4]2: Grüneisen parameter and anharmonicity properties. Journal of Solid State Chemistry, 258, 845-853. doi:10.1016/j.jssc.2017.12.022Manjon, F. J., Tiginyanu, I., & Ursaki, V. (Eds.). (2014). Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds. Springer Series in Materials Science. doi:10.1007/978-3-642-40367-5Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Parlak, C., & Eryiğit, R. (2006). Ab initiovolume-dependent elastic and lattice dynamical properties of chalcopyriteCuGaSe2. Physical Review B, 73(24). doi:10.1103/physrevb.73.245217Kern, G., Kresse, G., & Hafner, J. (1999). Ab initiocalculation of the lattice dynamics and phase diagram of boron nitride. Physical Review B, 59(13), 8551-8559. doi:10.1103/physrevb.59.8551B. A. Weinstein and R. Zallen, Light Scattering in Solids IV (Springer, 1984), p. 463.Schwer, H., & Krämer, V. (1990). The crystal structures of CdAl2S4, HgAl2S4, and HgGa2S4. Zeitschrift für Kristallographie, 190(1-2), 103-110. doi:10.1524/zkri.1990.190.1-2.103Mamedov, K. K., Aliev, M. M., Kerimov, I. G., & Kh. Nani, R. (1972). Heat capacity of AIIB2IIIC4VI-type ternary semiconducting compounds at low temperatures. Physica Status Solidi (a), 9(2), K149-K152. doi:10.1002/pssa.2210090255Quintero, M., Morocoima, M., Guerrero, E., & Ruiz, J. (1994). Temperature variation of lattice parameters and thermal expansion coefficients of the compound MnGa2Se4. Physica Status Solidi (a), 146(2), 587-593. doi:10.1002/pssa.2211460203Ravindran, T. R., Arora, A. K., & Mary, T. A. (2000). High Pressure Behavior ofZrW2O8: Grüneisen Parameter and Thermal Properties. Physical Review Letters, 84(17), 3879-3882. doi:10.1103/physrevlett.84.3879Morocoima, M., Quintero, M., Guerrero, E., Tovar, R., & Conflant, P. (1997). Temperature variation of lattice parameters and thermal expansion coefficients of the compound ZnGa2Se4. Journal of Physics and Chemistry of Solids, 58(3), 503-507. doi:10.1016/s0022-3697(96)00048-

    La vid silvestre en México. Actualidades y potencial

    Get PDF
    En ocho capítulos se aborda el estado del arte de la vid silvestre en MéxicoEl estudio de las especies vegetales nativas de México representa un reto que cada día más investigadores mexicanos asumen. Durante muchos años, el apoyo a la investigación pública ha sido mínimo; desde el punto de vista agronómico es insuficiente para avanzar a la velocidad que requiere nuestro país para afrontar problemas de producción y distribución de alimentos. Por esa razón, entre otras, me es grato presentar esta obra que compila parte de los trabajos de la Red de Vid Silvestre patrocinada por el Sistema Nacional de Recursos Fitogenéticos (sinarefi) dependiente de la sagarpa; trabajos apuntalados por investigadores que sin pertenecer a la red han colaborado en el estudio de las plantas del género Vitis. En este libro se muestra el potencial del país para aprovechar el recurso vid, empleado desde antes de la conquista española por nativos mexicanos que conocían sus bondades. Es necesario continuar el avance en el conocimiento de este recurso, por ello el presente libro pretende invitar a toda persona interesada en contribuir con el rescate y conservación de las vides mexicanas. Los autores y editores, así como las instituciones en donde laboramos y aquellas que patrocinan estas investigaciones, esperamos se cumpla este objetivo y que el lector, alumno, profesor, investigador, público en general, disfrute esta lectura y, sobre todo, se interese en el recurso VitisSEP, SINAREFI, UAEME

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    The ultra-high-energy cosmic-ray sky above 32 EeV viewed from the Pierre Auger Observatory

    Get PDF

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    corecore