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Discrete-like diffraction dynamics in free space 
Armando Perez-Leija,1,* Francisco Soto-Eguibar,2 Sabino Chavez-Cerda,2 

Alexander Szameit,1 Hector Moya-Cessa,2,3 and Demetrios N. Christodoulides3 
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Abstract: We introduce a new class of paraxial optical beams exhibiting 
discrete-like diffraction patterns reminiscent to those observed in periodic 
evanescently coupled waveguide lattices. It is demonstrated that such 
paraxial beams are analytically described in terms of generalized Bessel 
functions. Such effects are elucidated via pertinent examples. 

©2013 Optical Society of America 

OCIS codes: (050.1940) Diffraction; (260.2030) Dispersion; (350.5500) Propagation. 
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1. Introduction 

The ability to tailor and manipulate the dynamics of classical and non-classical light using 
photonic lattices has become a topic of importance for scientific research and practical 
applications [1]. As it has been shown in a number of studies, such discrete optical 
arrangements can be pre-engineered in order to produce discrete wave dynamics similar to 
those occurring in diverse branches of physics [2–9]. For instance, optical fields traversing 
one-dimensional periodic lattices undergo discrete diffraction and as a result they evolve in a 
way entirely analogous to electronic wave-functions in crystalline structures [1]. In this 
respect, the effective discretization of the underlying field dynamics allows one to observe the 
corresponding electron states within the realm of optics [8]. Meanwhile, in quantum optics, 
such discretization of the wave-functions has been exploited in order to carry out several 
interesting investigations such as quantum walks of correlated photons [10], Bloch 
oscillations of NOON states [11], simulations of different quantum statistics [12], and the 
prefect transfer of quantum states [13, 14]. 

Evidently, devising new schemes capable of extending the concept of discrete diffraction 
in other settings is of high importance. Of particular interest will be to realize such discrete 
diffraction patterns even in the absence of a periodic environment, e.g. in the bulk of a 
uniform material or even in free space. In this paper we demonstrate that paraxial optical 
beams exhibiting discrete-like diffraction patterns are possible in homogeneous media that are 
reminiscent to those encountered in periodic evanescently coupled waveguide lattices 
endowed with coupling interactions up to second order. The evolution of such paraxial beams 
are analytically described in terms of generalized Bessel functions. The prospects of 
observing these effects are also discussed. 

2. Theoretical analysis 

As previously mentioned, this new class of paraxial optical beams introduced here, can 
exhibit discrete-like diffraction patterns resembling those arising from the impulse response 
(single site excitation) in periodic photonic lattices with first and second order interaction 
couplings, (see Figure 1) [15, 16]. We show that such paraxial beams can be produced after 
propagating a field profile having the form of a Bessel function of integer order. For 
implementation purposes, we also assume that this Bessel field distribution is apodized in a 
Gaussian manner. In other words, the initial field profile is given by 

( ) ( ) ( )2 2, 0 exp 2 ns s J sψ ξ σ α= = − , where ( ),s ∈ −∞ ∞  and ξ  represent normalized 

transverse and longitudinal coordinates, respectively. Interestingly, the propagation dynamics 
obeyed by such optical beams can be described in closed form, from where one can 
analytically predict their ballistic-like behavior. 
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Fig. 1. Transverse view of an array of evanescently coupled single mode waveguides. 1κ  is 

the coupling strength between nearest neighbors whereas 2κ  represents the couplings 

between next-nearest neighbors. 

For comparison purposes, we start by briefly reviewing the optical dynamics observed in 
periodic one-dimensional arrays of evanescently coupled single-mode waveguides having 
first and second order coupling interactions. To this end, we employ the coupled-mode 
formalism, where the transverse profiles of the propagating modes are assumed to remain 
invariant and only the amplitudes evolve along the direction of propagation [16]. 
Accordingly, the mode amplitude at the thm  waveguide is governed by the set of coupled 
differential equations 

 ( ) ( )1 1 1 2 2 2 0,m
m m m m

dE
i E E E E

dZ
κ κ+ − + −+ + + + =  (1) 

where ( ),m ∈ −∞ ∞ , Z  is the normalized propagation distance, 1κ  represents the coupling 

coefficient between the thm  element and its nearest neighbors, whereas 2κ  stands for second 

order interactions. In this case, one can show that the field amplitude at waveguide m  when 
light is launched into the 0-th  channel is given by 

 ( ) ( ) ( )2 1 22 2 ,m l
m m l l

l

E Z i J Z J Zκ κ
∞

−
−

=−∞

=   (2) 

where ( )mJ Z  is the Bessel function of the first kind and order m  [16]. By using the identity 

( ) ( ) ( )2J , ; l
m m l ll

x y r r J x J y
∞

−=−∞
= , where ( )J , ;m x y r  represents a generalized Bessel 

function (GBF) of order m [18, 19], Eq. (2) can be written in a more compact form 

 ( ) ( )1 2J 2 ,2 ; .m
m mE Z i Z Z iκ κ= −  (3) 

Note that a GBF of order m can be computed through the finite integral 

 ( ) ( ) ( )( )m

1
J , ;1 exp sin sin 2 d ,

2
x y i x y m

π

π
φ φ φ φ

π −
 = + −    

when 1r = , and they obey the recurrence relations 

 ( ) ( ) ( ) ( ) ( )1 1 2 2

1
2 J , ; [J , ; J , ; ] 2 rJ , ; J , ; ,m m m m mm x y r x x y r x y r y x y r x y r

r− + − −
 = + + + 
 

  

and have the generating function [18] 

#187653 - $15.00 USD Received 22 Mar 2013; revised 10 Jun 2013; accepted 14 Jun 2013; published 19 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.017951 | OPTICS EXPRESS  17953



 ( ) 2
2

1 1
( , ; , ) t J , ; r exp .

2 2
m

mm

x y
T x y r t x y t rt

t rt

∞

=−∞

    = = − + −        
     

We now turn to the analysis of the paraxial propagation dynamics of Bessel field distributions 

of the form ( ) ( ) ( )2 2, 0 exp 2 ns x J sψ ξ σ α= = − . We first study the case when the initial 

field can be written as a product of two arbitrary functions in the transverse coordinate, that 
is, ( ) ( ) ( ), 0s g s f sψ ξ = = . The choice of this type of initial condition is quite natural since 

in practice one generally has to apply an apodizing function to the initial field profile, see for 
example [20]. In order to analyze this general case, we consider the normalized paraxial 
equation of diffraction 

 
2

2

1
,

2
i

s

ψ ψ
ξ

∂ ∂= −
∂ ∂

 (4) 

where ψ  is the electric field envelop, 2
0/z kxξ = , 02k nπ λ=  is the wavenumber of the 

optical field, and 0s x x=  represents a dimensionless transverse coordinate and 0x  is an 
arbitrary transverse scale. The solution for the paraxial Eq. (4) is given by 

 ( ) ( ) ( ) ( )2, exp exp d d .
2

s F w u G u i w isw u w
ξψ ξ

∞ ∞

−∞ −∞

 = −  
    (5) 

The details of this reduction and subsequent solutions are given in the Appendix. On the other 
hand, for the case where the initial field is given by the product of an apodizing Gaussian 
profile and an arbitrary function ( )f s , the propagated field is described by 

 
( ) ( ) ( ) ( )( )2 2

1 2 3 2, exp exp exp exp 2 ,
2

s g s ig F v i g v isv i g dv
ξ

ψ ξ
∞

−∞
= − + −  

      
 (6) 

where ( ) ( )( ) 1
2

1 2g iξ σ ξ
−

= − − , ( ) ( )( )2 2
2 ln 2g i iξ σ ξ σ= − − , ( ) ( )2 2

3 2g iξ ξ σ ξ= − − . 

For the particular case where the initial field distribution is given by the functions 

( )2 2( ) exp 2g s s σ= −  and ( )( ) nf s J sα= , Eq. (6) reduces to 

 ( ) ( ) ( )( ) ( ) ( )( )2 2
1 2

1
, exp exp sin sin d ,

2
s g s ig in iA iB

π

π
ψ ξ ξ ξ φ φ φ φ

π −
= − − + +  (7) 

where ( ) ( )( )2 2A s s iα σ σ ξ= − , ( ) ( )2
32

B ig
ξξ α ξ = −  

. After some algebra, as indicated 

in the Appendix, Eq. (7) can be cast as follows 

 ( ) ( ) ( ) ( ) ( ) ( )2
1 2 2, exp 2 .

2
m

n m m
m

B
s g s i g i J A J Bψ ξ ξ ξ

∞

+
=−∞

  = − − −    
  (8) 

Note that Eq. (8) can be expressed in terms of the GBF of order n  using the identity 

( ) ( ) ( ) ( )2J , 2; 2
m

n n m mm
A B i i J A J B

∞
+=−∞

− = − . This in turn reveals the mathematical 

similitude between the impulse response of the aforementioned photonic lattices and the 
paraxial GBF beams studied here. A useful representation of the GBF is given by the finite 
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integral ( )( )( ) ( ) ( )
n

exp 21
J ( , ; ) exp sin exp exp 2

2 2

iy
x y r i x n r i d

r

π

π

φ
φ φ φ φ

π −

  
 = − − −   

  
 . In 

addition, for the numerical simulations presented here we found that taking into account 101 
elements in the series given in Eq. (8), reproduce a solution with an error of 1410−  compared 
with the numerical integration of Eq. (4). By taking a closer look into the exponential terms 
accompanying the GBF in Eq. (8), one can see that the intensity dynamics is bounded by a 

modulating Gaussian envelope, ( ) ( )( )2 4 2exp sσ σ ξ− + , which amplitude decreases along 

propagation as ( )( ) ( )2 2 4 2 2 4exp 2 1ασ ξ σ ξ ξ σ− + + . Note that, as expected, at 0ξ =  the 

envelope becomes the intensity of the apodizing function, ( )2 2exp s σ− , whereas the series 

of Bessel functions collapses to ( )nJ sα . By comparing the series of Bessel functions 

appearing in Eq. (2) and Eq. (8), one can see that in the latter case the role of the first and 
second order interaction couplings are played by the complex functions ( )A s  and ( )B ξ , 

respectively. This fact introduces the possibility of inducing, in the present systems, complex-
like “coupling coefficients”, something that on many occasions is desired in integrated 
waveguide arrays [22, 23]. At the same time, these complex arguments establish a limit for 
the observation of the discrete-like diffraction effects. 

In what follows we show that discrete-like diffraction occurs as a result of the destructive 
and constructive interference undergone when left and right lobes of the initial field profile 
collide. This in turn impose a restriction to the possible values of σ , for instance, if we 
consider σ  to be small enough such that by apodizing the initial Bessel function we truncate 
all the side lobes, then the propagating optical field will diffract in a way similar to a 
Gaussian beam. On the other hand, if σ  is chosen to truncate just the higher order lobes, it 
will allows us to observe discrete- like diffraction. Furthermore, the qualitative effects in the 
diffraction process depend on the parity of the order of the initial Bessel functions, i.e., 
whether n  is even or odd. To demonstrate this we compare the cases 3n =  and 6n =  for a 
beam propagating in free space and using the realistic parameters 0 633nmλ =  and 

0 10x mμ= . In Figs. 2(a), 2(b) and 2(c), 2(d), we present the calculated propagation dynamics 

corresponding to the initial field distributions ( ) ( ) ( )2 2
3,6, 0 exp 2x z x J xψ σ α= = − . As 

clearly seen, in both cases the main lobes of the Bessel functions tend to propagate towards 
the center ( )0x =  and eventually collide after a certain propagation distance z . As a result, 

interference effects are observed within the “triangular region” subtended by the two highest 
energy branches. In fact, those two branches can be considered as the ballistic lobes for the 
paraxial beams examined here. Indeed such interference effects are responsible for the 
apparent discretization of the underlying optical fields. A notable difference between these 
two beams is the fact that whenever n is odd, an intensity gap is formed at exactly 0x = , (see 
Fig. 2(a)). This gap is a direct byproduct of the destructive interference caused by the π  
phase difference existing between the two sides ( x−  and x ) of the propagating optical 

( )nJ xα  wave, and can also be readily explained from the analytical solution since 

( )2m+1J 0, ; 0y r = . On the other hand, when n  is even, the entire wave is in phase and as a 

result constructive interference takes place producing periodic peaks of intensity along the 
propagation axis at 0x = , that exactly follow a Bessel function since ( )2mJ 0, ;1 ( ),my J y=  

(see Fig. 2(c)). Note that in this latter case ( n  even), the optical field undergoes similar 
effects to those reported in reference [23] for autofocusing waves. 
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Fig. 2. (a) and (c) depict the intensity evolution of the initial fields 

( ) ( ) ( )2 2
3,0 exp 2x x J xψ σ α= −  and ( ) ( ) ( )2 2

6,0 exp 2x x J xψ σ α= − , 

respectively. The parameters used are 1α =  and 
310σ −= . (b) and (d) show the 

corresponding initial field profile. 

For the special case 0n = , the situation is different and some special features are 
revealed. The most remarkable of them is that the field evolves in a way that is analogous to 
that expected in periodic photonic lattices, under single site excitations, when having 
couplings up to second order. In other words, the propagation dynamics exhibited in this 
particular case tends to spread out in a “ballistic” way, thus emulating in free space discrete 
diffraction phenomena. A suitable way to describe the dynamical evolution of wavepackets is 

through the average value of the transverse coordinate, ( ) ( ) ( )* , , dF z x z x x z xψ ψ=  , which 

in this case is proportional to 2z , revealing so the ballistic nature of these waves. In Fig. (3) 
we illustrate these effects by comparing the intensity evolution of the initial field 

( ) ( ) ( )2 2
0, 0 exp 2x z x J xψ σ α= = −  (again using the parameters 0 633nmλ = , 0 10x mμ= , 

1α =  and 310σ −= ), Figs. 3 (a)-3(c), and the impulse response of a periodic photonic lattice 

containing 30 waveguide elements and coupling coefficients 1
1 1cmκ −=   and 1

2 0.1cmκ −=  , 
Figs. 3 (d)-3(f). In order to elucidate the limitations of the proposed paraxial beams on the 
generation of discrete-like diffraction, in Fig. (4) we separately depict the intensity evolution 

of the same wavepacket ( ) ( ) ( )2 2
0, 0 exp 2x z x J xψ σ α= = − , Fig. 4(a), and the Gaussian 

envelope, Fig. 4(b), for a longer propagation distance. In addition, to qualitatively 
demonstrate the ballistic spreading of the intensity, we have numerically computed the 

average value ( )F z  on the semi-plane ]( ,0x ∈ −∞  (longitudinal yellow curve in Fig. (4)). 

Note that after the distance l , which gives the distance at which the average function ( )F z  

surpasses the point where the intensity of the envelope decays up to one-half of its maximum 
value (FWHM), the features of the discrete-like diffraction pattern start to disappear and 
completely vanish after 2z l= . This is because after z l= , the imaginary part of the 

arguments ( )A x  and ( )B z  become dominant; this implies that after this particular distance, 
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the Bessel functions in the solution are proportional to ( )n
ni I r , where ( )nI r  represents the 

modified Bessel function. As a result, the arising modified Bessel functions tend to grow 
exponentially. However, since the GBFs are bounded by the Gaussian envelope, this 
exponential growing does not affect the physical meaning of the solution. 

 

Fig. 3. Theoretical comparison of light propagation through free space for the initial field 

profile ( ) ( ) ( )2 2
0,0 exp 2x x J xψ σ α= −  (a-c), and in a periodic photonic lattice of 30 

elements, under a single site excitation (d-f). Figs. (a, d) depict the initial field distributions, (b, 
e) the normalized intensity evolution, and (c, f) the intensity profiles at the output. The 

parameters used for the paraxial beams are 1α =  and 
310σ −= . For the waveguide array 

we assumed coupling coefficients 
1

1 1cmκ −=   and 
1

2 0.1cmκ −=  . 

3. Conclusion 

The theory developed in the present paper along with the numerical simulations clearly 
demonstrate the feasibility of generating discrete-like diffraction processes in free space by 
properly engineering the initial field profile. The implementation of these beams should be 
straightforward using a spatial light modulator in order to produce the proper amplitude and 
phase required by the initial field profiles. Our results can provide a new optical platform 
upon which one can study the effects of discrete diffraction over matter, like for example 
particles, molecules, etc. 
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Fig. 4. (a) Intensity propagation of the field ( ) ( ) ( )2 2
0,0 exp 2x x J xψ σ α= −  and (b) 

the absolute square of the Gaussian envelope ( )2 2exp 2x σ− , the parameters used are the 

same as in Fig. (3). In this case, we found that 3FWHM mm= , whereas 3.3l cm= . 

4. Appendix 

Starting from the normalized paraxial equation of diffraction 2 22i sψ ξ ψ∂ ∂ = −∂ ∂ , and 

defining the operator p i s= − ∂ ∂ , such that the commutator [ ],s p i= , it is clear that the 

formal solution to Eq. (4) is given by ( ) ( ) ( ) ( )2, exp 2s i p g s f sψ ξ ξ= . Then, expanding the 

product ( ) ( )f s g s  in plane waves we obtain [24] 

 ( ) ( ) ( ) ( ) ( )2, exp exp ex
2

ˆ p .s i p G u isu du F v isv dv
ξψ ξ

∞ ∞

−∞ −∞

 =  
     (9) 

By using the identity operator ( ) ( )2 2exp 2 exp ˆ 1ˆ 2i p i pξ ξ− =  and the Hadamard’s lemma 

( ) ( ) ( ) ( )2 2exp 2 exˆ ˆ ˆp 2i p h s i p h s pξ ξ ξ− = +  [23–25], Eq. (9) becomes 

 ( ) ( ) [ ]( ) ( ) ( )2, exp ˆ ˆexp exp .
2

s G u iu s p i p du F v isv dv
ξψ ξ ξ

∞ ∞

−∞ −∞

 = +  
    (10) 

Since the commutator [ ] [ ]ˆ ˆ ˆ, , , , 0p s p p s s= =       , we can use the Baker-Hausdorff formula to 

split the exponential [ ]( ) ( ) ( ) ( )2exp exp exp exˆ ˆ2 piu s p i u ius i upξ ξ ξ+ =  [25–27], so that Eq. 

(9) reduces to 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

, exp exp exp exp exp .
2

ˆ

2
ˆ

i u i p
s G u F v ius i up isv dv du

ξ ξ
ψ ξ ξ

∞ ∞

−∞ −∞
=

    
    

    
  (11) 

Using the fact that 
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 ( ) ( ) ( ) ( )
22 2

0

2ˆ
exp exp exp exp exp

2 ! 2

k k

k

ii p i v
isv i isv isv

k s

ξξ ξ∞

=

   ∂ = − =    ∂    
 (12) 

and ( ) ( ) ( ) ( )ˆexp exp exp expi pu isv i uv isvξ ξ= , Eq. (11) acquires the form 

 ( ) ( ) ( ) ( )( ) ( )( )( )2
, exp 2 exps G u F v i u v is u v dv duψ ξ ξ

∞ ∞

−∞ −∞
= + +   (13) 

Then, by introducing the change of variable w u v= +  we obtain finally obtain Eq. (5) 

 ( ) ( ) ( ) ( ) ( )( )2, exp 2 exp .s G u F w u i w isw udw dψ ξ ξ
∞ ∞

−∞ −∞
= −   (14) 

In order to obtain the field solution describing the propagation dynamics of the initial profile 

( ) ( ) ( )2 2, 0 exp 2s s f sψ ξ σ= = − , we start from the formal solution 

( ) ( ) ( ) ( )2 2 2, exp 2 exp 2s i p f ssξ ξ σψ −= . Again, after using the operator unitary identity 

( ) ( )2 2exp 2 exp ˆ 1ˆ 2i p i pξ ξ− =  along with the transformation 

( ) ( ) ( ) ( )( )( )2 2 2 2 2 2 2 2ˆ ˆexp 2 exp 2 exp 2 exp 2i p s i p s sp ps pξ σ ξ ξ ξ σ− − = − + + , the field 

solution can be expressed as 

 ( ) ( )( ) ( ) ( )2 2 2 2 2ˆ ˆ ˆ ˆ, exp 2 exp 2 .s s sp ps p i p f sψ ξ ξ ξ σ ξ = − + + +   (15) 

Since the operators ( )2 ˆ ˆ,s sp ps+ , and 2p̂  provide an operator algebra, where the 

commutation relations between them are closed and given by: ( )22 ˆ ˆ ˆ, 2s i s sp p p  = +  , 

( ) 2 2ˆ ˆ ˆ ˆ, 4sp p p ps i + =  , and ( )2 2ˆ, ˆ 4s ss p p si + =  , the first exponential can be factorized as 

follows 

 
( )

( )( ) ( )( )( ) ( )( )
2 2 2

2 2

1 2 32
exp exp exp exp .

2

ˆ ˆ ˆ
ˆ ˆ ˆ

s s p ps p
g s g s p ps g p

ξ ξ
ξ ξ ξ

σ

+ + +
− = +
     
 

(16) 

By differentiating both sides of Eq. (16) with respect to ξ , and using the commutation 

relations, one can show that ( ) ( )( ) 1
2

1 2g iσ ξξ
−

= − − , ( ) ( )( )2 2
2 ln 2g i iσξ ξ σ= − − , and 

( ) ( )2 2
3 2g iξ σ ξξ = − − . Then, after using these functions along with Eq. (12), and 

expanding ( )f s  in plane waves, the propagated field becomes 

 ( ) ( ) ( )( ) ( ) ( )2 2
1 2 3, exp exp exp exp .

2
ˆ ˆs g s g sp ps F v i g v isv dv

ξψ ξ
∞

−∞

  = + +    
 (17) 

Inserting the unitary operator identity ( )( ) ( )( )2 2ˆ ˆ ˆ ˆexp expg sp ps g sp ps− + +  after the term 

( )exp isv  and using the fact that ( )( ) ( )2 2ˆex 1 expˆp g sp ps ig+ = − , we obtain Eq. (6) 

 ( ) ( ) ( ) ( )( )2 2
1 2 3 2, exp exp exp exp 2 .

2
s g s ig F v i g v isv i g dv

ξψ ξ
∞

−∞

  = − + −    
   (18) 
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For the particular case where the initial field is a Bessel function of order n  apodized by a 

Gaussian profile, ( ) ( ) ( )2 2, 0 exp / 2 ns s J sψ ξ σ α= = − , we start from Eq. (15), and use the 

integral representation of Bessel functions ( ) ( )( )( )1
exp sin

2n s dsJ i n
π

π
φ φ φα α

π −
= − − . Then, 

following the same steps as in the previous case, one readily obtains Eq. (7) 

 ( ) ( ) ( )2 2
1 2exp

1
, exp sin sin ,

2
s g s ig in iA iB d

π

π
ψ ξ φ φ φ φ

π −
= − − + +  (19) 

where ( )( )2exp 2A s i g ξα= −  and ( ) ( )( )2
32B igα ξ ξ= − . By using the identity 

( ) ( )( )2sin 1 cos 2 2φ φ= −  and expanding the exponentials in Taylor series, Eq. (19) can be 

easily cast as 

 ( ) ( )( ) ( )( )2

1 2

, 0

1 1
, / 2 exp 2 2 sin

2
ex

! 4
p

!

j m

j m

iB
s g s i g B i n j m iA d

j m

π

π
ψ ξ φ φ φ

π

+∞

−
=

= − − − + − +−  
 
   (20) 

After some algebra and using the integral form of the Bessel function of the first kind, one 
can easily obtain Eq. (8). 
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