33,241 research outputs found

    Floquet interface states in illuminated three-dimensional topological insulators

    Get PDF
    Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Chern numbers which only depend on the helicity of the polarization of the radiation field. Here we propose a setup consisting of a pair of counter-rotating lasers, and show that one-dimensional chiral states emerge at the interface between the two lasers. These interface states turn out to be spin-polarized and may trigger interesting applications in the field of optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia

    The Algebraic Bethe Ansatz and Tensor Networks

    Get PDF
    We describe the Algebraic Bethe Ansatz for the spin-1/2 XXX and XXZ Heisenberg chains with open and periodic boundary conditions in terms of tensor networks. These Bethe eigenstates have the structure of Matrix Product States with a conserved number of down-spins. The tensor network formulation suggestes possible extensions of the Algebraic Bethe Ansatz to two dimensions

    Structural insight into the TRIAP1/PRELI-like domain family of mitochondrial phospholipid transfer complexes

    Get PDF
    The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1–SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    Global Occurrence and Chemical Impact of Stratospheric Blue Jets Modeled With WACCM4

    Get PDF
    In this work we present the first parameterizations of the global occurrence rate and chemical influence of Blue Jets, a type of transient luminous event taking place in the stratospheric region above thunderclouds. These parameterizations are directly coupled with five different lightning parameterizations implemented in the Whole Atmosphere Community Climate Model (WACCM4). We have obtained a maximum Blue Jet global occurrence rate of about 0.9 BJ per minute. The geographical occurrence of Blue Jets is closely related to the chosen lightning parameterization. Some previously developed local chemical models of Blue Jets predicted an important influence onto the stratospheric concentration of N2O, NOx, and O3. We have used these results together with our global implementations of Blue Jets in WACCM4 to estimate their global chemical influence in the atmosphere. According to our results, Blue Jets can inject about 3.8 Tg N2O-N/year and 0.07 Tg NO-N/year near the stratosphere, where N2O-N and NO-N stand for the mass of nitrogen atoms in N2O and NO molecules, respectively. These production rates of N2O and NOx could have a direct impact on, for example, the acidity of rainwater or the greenhouse effect. We have found that Blue Jets could also slightly contribute to the depletion of stratospheric ozone. In particular, we have estimated that the maximum difference in the concentration of O3 at 30 km of altitude between simulations with and without Blue Jets can be about −5% in equatorial and polar regions. ©2019. American Geophysical Union. All Rights Reserved.This work was supported by the Spanish Ministry of Science and Innovation, MINECO under projects and ESP2017-86263-C4-4-R and by the EU through the H2020 Science and Innovation with Thunderstorms (SAINT) project (Ref. 722337) and the FEDER program. Authors F.J.P.I and F.J.G.V acknowledge financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia(SEV-2017-0709). The National Center for Atmospheric Research is sponsored by the National Science Foundation. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. F. J. P.-I. acknowledges a PhD research contract, code BES-2014-069567. F. J. G.-V. acknowledges support from the Spanish Ministry of Education and Culture under the Salvador de Madariaga program PRX17/00078.Peer Reviewe

    Molecular Gas in Candidate Double Barred Galaxies III. A Lack of Molecular Gas?

    Full text link
    Most models of double-barred galaxies suggest that a molecular gas component is crucial for maintaining long-lived nuclear bars. We have undertaken a CO survey in an attempt to determine the gas content of these systems and to locate double barred galaxies with strong CO emission that could be candidates for high resolution mapping. We observed 10 galaxies in CO J=2-1 and J=3-2 and did not detect any galaxies that had not already been detected in previous CO surveys. We preferentially detect emission from galaxies containing some form of nuclear activity. Simulations of these galaxies require that they contain 2% to 10% gas by mass in order to maintain long-lived nuclear bars. The fluxes for the galaxies for which we have detections suggest that the gas mass fraction is in agreement with these models requirements. The lack of emission in the other galaxies suggests that they contain as little as 7 x 10^6 solar masses of molecular material which corresponds to < 0.1% gas by mass. This result combined with the wide variety of CO distributions observed in double barred galaxies suggests the need for models of double-barred galaxies that do not require a large, well ordered molecular gas component.Comment: 17 pages (3 figures embedded on pg 17). To appear in the March 10 issue of the Astrophysical Journa

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    The critical behavior of 3D Ising glass models: universality and scaling corrections

    Full text link
    We perform high-statistics Monte Carlo simulations of three three-dimensional Ising spin-glass models: the +-J Ising model for two values of the disorder parameter p, p=1/2 and p=0.7, and the bond-diluted +-J model for bond-occupation probability p_b = 0.45. A finite-size scaling analysis of the quartic cumulants at the critical point shows conclusively that these models belong to the same universality class and allows us to estimate the scaling-correction exponent omega related to the leading irrelevant operator, omega=1.0(1). We also determine the critical exponents nu and eta. Taking into account the scaling corrections, we obtain nu=2.53(8) and eta=-0.384(9).Comment: 9 pages, published versio

    On the Reliability of Cross Correlation Function Lag Determinations in Active Galactic Nuclei

    Full text link
    Many AGN exhibit a highly variable luminosity. Some AGN also show a pronounced time delay between variations seen in their optical continuum and in their emission lines. In effect, the emission lines are light echoes of the continuum. This light travel-time delay provides a characteristic radius of the region producing the emission lines. The cross correlation function (CCF) is the standard tool used to measure the time lag between the continuum and line variations. For the few well-sampled AGN, the lag ranges from 1-100 days, depending upon which line is used and the luminosity of the AGN. In the best sampled AGN, NGC 5548, the H_beta lag shows year-to-year changes, ranging from about 8.7 days to about 22.9 days over a span of 8 years. In this paper it is demonstrated that, in the context of AGN variability studies, the lag estimate using the CCF is biased too low and subject to a large variance. Thus the year-to-year changes of the measured lag in NGC 5548 do not necessarily imply changes in the AGN structure. The bias and large variance are consequences of finite duration sampling and the dominance of long timescale trends in the light curves, not due to noise or irregular sampling. Lag estimates can be substantially improved by removing low frequency power from the light curves prior to computing the CCF.Comment: To appear in the PASP, vol 111, 1999 Nov; 37 pages; 10 figure
    corecore